基于文本无关的声纹识别算法的研究及实现
[Abstract]:With the rapid development of Internet technology, the network gradually covers every corner of social life. In the Internet environment, the traditional identity authentication method is facing a huge challenge, which is more and more unable to meet the needs of the practical application environment. Among all the authentication methods, biometric identification technology is a kind of identity recognition technology based on human physiological and acquired characteristics, which has been widely used in practice because of its unique advantages. Among all biometric identification techniques, text-independent voiceprint recognition is considered to be one of the most practical biometric identification techniques. It is an important branch of speech recognition. In the practical application environment, due to the influence of many factors, such as acquisition equipment, transmission line, and so on, the final effective speech data is very limited, which makes the recognition performance and execution efficiency of the system difficult to achieve the ideal recognition effect. Therefore, this paper is mainly based on the text-independent phonetics validation method. The recognition rate and computational complexity of the system are important indexes to evaluate the system performance in the voiceprint verification system. The traditional UBM-MAP-GMM model structure solves the mismatch between the test speech and the trained speech to a certain extent, and the recognition performance of the system is also ideal. However, in the practical application, in the face of the short speech problem, the model requires a lot of computation. System robustness is poor. Therefore, this paper studies the voiceprint recognition algorithm from several angles, such as reducing the system computation and improving the recognition rate. The main contents are as follows: 1. This paper analyzes the influence of the initial value of the model on the EM algorithm in model training, aiming at the defect that the traditional K-means algorithm randomly selects the initial clustering center, which may lead to the local convergence of the algorithm, an initial clustering center selection algorithm based on density and distance is proposed. The K-means algorithm is improved, and the algorithm is proved by experiment. 2. 2. The structure of UBM-MAP-GMM model is discussed and analyzed. According to the large amount of calculation, the influence of individual voice-pattern model GMM service from the same model structure and part of Gao Si component on the recognition result is discussed. A voiceprint validation method based on UBM-CM-MAP-GMM model architecture is proposed. Experiments show that the algorithm can improve the recognition time and error rate of the algorithm. In the framework of UBM-CM-MAP-GMM model, the mixing degree of the voiceprint model GMM is studied. The experimental data show that the best result is when the mixing degree of GMM is half that of UBM. 4. In this paper, the phonetics validation software is implemented on the UBM-CM-MAP-GMM model architecture, and the recognition efficiency of the software is analyzed and verified experimentally. Compared with the traditional UBM-MAP-GMM model architecture, the recognition efficiency of the software is compared with that of the traditional UBM-MAP-GMM model. The improved algorithm reduces the amount of computation and the rate of equal error to a certain extent.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN912.3
【相似文献】
相关期刊论文 前10条
1 蔡耿平,黄顺珍,徐志鸿,蓝波,范国华,梁凡;声纹识别系统[J];深圳大学学报;2002年02期
2 于哲舟,杨佳东,蒲东兵,周春光,王纲巧;多门限声纹识别方法[J];吉林大学学报(信息科学版);2005年02期
3 朱浩冰;郭东辉;;声纹识别系统原理及其关键技术[J];计算机安全;2007年09期
4 靳玉红;;声纹识别中的语言属性映射[J];重庆邮电大学学报(自然科学版);2012年04期
5 叶田田;;声纹识别系统设计[J];工业控制计算机;2012年06期
6 霍春宝;张彩娟;赵红敏;;与文本无关的声纹识别系统的研究[J];辽宁工业大学学报(自然科学版);2013年01期
7 杨凌;蔡涛;李瀚;;一种改进型回声状态网络及其在声纹识别上的应用[J];中国科技信息;2014年08期
8 陈幼松;从“芝麻开门”到声纹识别[J];百科知识;2003年01期
9 任培花;孙宏志;;基于言语过滤、情感补偿的活体声纹识别系统的设计[J];重庆科技学院学报(自然科学版);2007年01期
10 王会清;张涛;周帆;;声纹识别在虚拟仪器平台的实现[J];武汉工程大学学报;2012年12期
相关会议论文 前2条
1 杨莹春;雷震春;吴朝晖;;基于情感补偿的活体声纹识别框架研究[A];第一届中国情感计算及智能交互学术会议论文集[C];2003年
2 黄晓丹;洪青阳;李琳;李稀敏;梁大伟;陈万里;吕伟辰;丘敬云;王薇;;声纹识别语音数据库建设的探讨[A];第十一届全国人机语音通讯学术会议论文集(一)[C];2011年
相关重要报纸文章 前5条
1 闫洁;声纹识别高精尖听音辨人不遥远[N];新华每日电讯;2014年
2 吴玺宏;声纹识别应用前景[N];计算机世界;2001年
3 邢方亮;以声辨人[N];计算机世界;2003年
4 北京大学信息科学中心视觉与听觉信息处理国家重点实验室 吴玺宏;声纹识别听声辨人[N];计算机世界;2001年
5 本报记者 霍娜;云上积累 云中绽放[N];中国计算机报;2014年
相关博士学位论文 前1条
1 张晶;声纹识别鲁棒性技术及应用研究[D];广东工业大学;2015年
相关硕士学位论文 前10条
1 杨瑞瑞;基于文本无关的声纹识别算法的研究及实现[D];电子科技大学;2017年
2 于娴;声纹识别在微信中的模式匹配研究[D];贵州大学;2015年
3 刘磊;声纹识别算法在军事通话中的研究与实现[D];东北大学;2014年
4 陈俊彬;融合声纹识别的护理床语音控制系统研发[D];广东工业大学;2016年
5 周雷;基于声纹识别的说话人身份确认方法的研究[D];上海师范大学;2016年
6 胡青;卷积神经网络在声纹识别中的应用研究[D];贵州大学;2016年
7 陈霄鹏;声纹识别中的时变鲁棒性问题研究[D];贵州大学;2016年
8 张芝旖;声纹识别相关技术研究及应用[D];南京航空航天大学;2016年
9 李韵;声纹识别系统中特征参数提取方法的对比分析研究[D];成都理工大学;2016年
10 王可;基于移动终端的声纹识别系统关键算法研究[D];上海师范大学;2017年
,本文编号:2387580
本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/2387580.html