当前位置:主页 > 科技论文 > 信息工程论文 >

大场景PolSAR图像人造目标检测方法研究

发布时间:2018-12-27 12:16
【摘要】:人造目标检测是遥感数据应用的重要环节,是灾害救援、军事侦察等应用的基础,检测性能与速度的优劣直接影响到后续的实际应用。众多遥感数据中,PolSAR为主动成像,具有全天时全天候的特点,这在目标实时检测应用中具有极大的优势。目前PolSAR图像的获取能力获得了极大的提升,图像覆盖区域以及数据量越来越大,这为PolSAR图像目标检测应用提供了数据基础。然而,传统算法大多关注精度指标,当图像数据量过大时,检测处理耗时也随之大幅增加。而以人造目标检测为基础的诸多场合中,则需要在有限的时间内完成相关工作,这对大场景PolSAR图像人造目标检测提出了处理速度上的要求。如何在精度满足要求的条件下,高效完成大场景PolSAR图像的人造目标检测成为研究面临的主要问题。本文以大场景PolSAR图像人造目标检测为主要研究内容,首先从PolSAR图像表征形式与人造目标特性分析入手,明确了人造目标在PolSAR图像中的具体特征,在此基础上进行基本检测理论的研究。随后对传统的目标提取算法进行了加速优化,并设计了基于快速Wishart计算的检测算法。然后进行了图像均匀度描述因子特征的设计,该特征具有目标区域提取的能力,且提取速度与传统纹理特征相比获得了较大的提高。利用图像均匀度描述因子特征,设计了三种基于该特征的极化目标检测算法。根据图像信息使用量的不同,三种算法具有不同检测性能以及检测速度,以适应不同的精度以及效率需求。最后选择实验数据,分别进行陆地环境人造目标检测以及海洋舰船目标检测实验,并从目标检测精度、重点目标检测情况以及处理时间三个方面对算法进行评价。实验结果表明,本文设计的四种检测算法均具有大场景PolSAR图像人造目标检测能力。其中,基于快速Wishart计算的检测算法其性能与监督信息选取相关,具有较大的性能提升潜力。基于图像均匀度描述因子特征的三种检测算法,能够在较短的时间内完成人造目标检测任务,且检测精度比传统方法更高。三种检测算法对图像信息的使用量不同,其检测性能与处理速度具有较大的差异,能够适应不同的精度与效率要求。
[Abstract]:Artificial target detection is an important part of remote sensing data application, and is the basis of disaster rescue, military reconnaissance and other applications. The performance and speed of detection directly affect the subsequent practical applications. Among the many remote sensing data, PolSAR is active imaging, which has the characteristics of all-day, all-weather, which has a great advantage in the application of target real-time detection. At present, the ability of PolSAR image acquisition has been greatly improved, the area covered by the image and the amount of data are more and more large, which provides a data basis for the application of PolSAR image target detection. However, most of the traditional algorithms focus on the accuracy index, when the amount of image data is too large, the detection processing time is also greatly increased. In many occasions based on artificial target detection, it is necessary to complete the related work in a limited time, which puts forward the processing speed requirements for large scene PolSAR image artificial target detection. How to efficiently complete the artificial target detection of large scene PolSAR images under the condition of satisfying the requirement of precision has become the main problem in the research. In this paper, the detection of artificial targets in large scene PolSAR images is the main research content. Firstly, the characteristics of artificial targets in PolSAR images are defined by analyzing the representation form of PolSAR images and the characteristics of artificial targets. On this basis, the basic detection theory is studied. Then the traditional target extraction algorithm is optimized and the detection algorithm based on fast Wishart computation is designed. Then, the feature of image uniformity description factor is designed. The feature has the ability to extract the target region, and the speed of extraction is improved compared with the traditional texture feature. Three polarimetric target detection algorithms based on the feature of image uniformity description factor are designed. According to the different amount of image information, the three algorithms have different detection performance and detection speed to meet different accuracy and efficiency requirements. Finally, the experimental data are selected to carry out artificial target detection in terrestrial environment and marine ship target detection experiment, and the algorithm is evaluated from three aspects: target detection accuracy, key target detection situation and processing time. Experimental results show that the four detection algorithms designed in this paper have the ability to detect artificial targets in large scene PolSAR images. Among them, the performance of the detection algorithm based on fast Wishart computation is related to the selection of supervisory information, which has a great potential for performance improvement. Three detection algorithms based on the feature of image uniformity description factor can complete the task of artificial target detection in a relatively short time and the detection accuracy is higher than that of the traditional method. The three detection algorithms have different usage of image information, and their detection performance and processing speed are quite different, which can meet different requirements of accuracy and efficiency.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN957.52

【参考文献】

相关期刊论文 前6条

1 晋瑞锦;周伟;杨健;;大场景下的极化SAR机场检测[J];清华大学学报(自然科学版);2014年12期

2 朱腾;余洁;谢东海;刘利敏;;粒子群优化算法在全极化SAR影像非监督分类中的应用[J];测绘科学技术学报;2014年01期

3 王娜;时公涛;陆军;匡纲要;;一种新的极化SAR图像目标CFAR检测方法[J];电子与信息学报;2011年02期

4 安文韬;才长帅;杨健;;极化SAR图像的人工目标检测[J];清华大学学报(自然科学版);2010年04期

5 刘秀清,杨震,杨汝良;全极化合成孔径雷达图像极化白化滤波参数估计方法的改进研究[J];电子学报;2003年12期

6 刘国庆,黄顺吉,A.Torre,F.Rubertone;一种新的多视全极化SAR目标检测器及其性能分析[J];信号处理;1998年02期

相关博士学位论文 前1条

1 邓少平;高分辨率极化SAR影像典型线状目标半自动提取[D];武汉大学;2013年

相关硕士学位论文 前7条

1 袁琳;PolSAR图像建筑物密度检测方法研究[D];哈尔滨工业大学;2016年

2 文雯;基于模糊粒子群优化和目标分解的极化SAR影像地物分类[D];西安电子科技大学;2014年

3 刘佳颖;基于粒子群优化和Freeman分解的SAR图像分割与分类[D];西安电子科技大学;2014年

4 张世吉;极化SAR目标检测算法研究及软件设计[D];西安电子科技大学;2014年

5 白晓静;基于Cloude分解的特征参数分析及快速替代方法[D];电子科技大学;2013年

6 秦先祥;极化SAR图像目标检测方法研究[D];国防科学技术大学;2010年

7 韩昭颖;多极化合成孔径雷达图像目标检测研究[D];中国科学院研究生院(电子学研究所);2005年



本文编号:2393046

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/2393046.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户44880***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com