基于毫米波雷达定位的汽车三维防碰撞算法研究
[Abstract]:In recent years, with the introduction of the concept of Internet vehicles, driverless vehicles, intelligent vehicles are in full swing. As one of the key technologies of driverless vehicles and intelligent vehicles, anti-collision technology is also the key technology to avoid traffic accidents, and has become a hot research topic at home and abroad. Measurement technology is one of the key technologies in automobile anti-collision technology. The classical linear frequency modulation continuous wave (LFMCW) radar measurement method uses FFT transform to process the data. When the number of sampling points increases, the amount of calculation increases significantly, which makes the real-time performance of the measurement system unsatisfactory. In order to solve this problem, the cross-correlation function measurement method is introduced. The effective sampling point part of sampling information can be transformed by FFT with the value measured by cross-correlation function measurement method, and more accurate distance information can be measured quickly and efficiently. Vehicle safety distance model is the core technology of automobile anti-collision system. Most of the existing safety distance models take the actual information such as actual speed as reference factors, and do not consider the change of relative information such as relative speed reasonably, and do not take into account the influence of complex traffic environment such as road condition, weather condition and so on. Based on this, this paper refers to the construction principle of the existing safety distance model, based on the vehicle braking process, from the angle of relative velocity, according to the relative velocity 螖 v = 0, Three different safety distance models are established for three different cases: greater than 0 and less than 0. Not only the influence of relative speed on safety distance is considered reasonably, but also the influence of different pavement materials on safety distance model is considered, and the influence of weather factors and driver's driving habit reaction speed on safety distance is also considered. Finally, using the anti-collision system to detect and calculate the traffic information in real time, according to the anti-collision warning strategy, alarm is made through the grade of sound, light and liquid crystal display to remind the driver of the current safety state of the vehicle. When necessary, the auto brake system can be started to reduce the collision accident and ensure the convenience, safety and comfort of the vehicle travel. Based on the research of BP neural network, the problems such as many factors affecting vehicle safety distance, complex vehicle safety distance model and a large number of nonlinear changes are effectively solved. It can meet the requirements of updating the model parameters and even updating the model constantly in the actual traffic process, so that the vehicle anti-collision system can update the safety distance model and parameters according to the traffic conditions in real time.
【学位授予单位】:兰州理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN958;U463.6
【参考文献】
相关期刊论文 前10条
1 刘贵如;周鸣争;王陆林;王海;;城市工况下最小安全车距控制模型和避撞算法[J];汽车工程;2016年10期
2 袁朝春;李道宇;吴飞;刘逸群;张龙飞;;汽车纵向主动避撞DRV安全距离模型[J];重庆理工大学学报(自然科学);2016年05期
3 朱冰;朴奇;赵健;吴坚;邓伟文;;基于路面附着系数估计的汽车纵向碰撞预警策略[J];汽车工程;2016年04期
4 胡丹;王红燕;汤振杰;张希威;鞠琳;王华英;;Design of a multiband terahertz perfect absorber[J];Chinese Physics B;2016年03期
5 何f 明;谢文球;罗积润;朱敏;郭炜;;Linear theory of beam wave interaction in double-slot coupled cavity travelling wave tube[J];Chinese Physics B;2016年03期
6 马可;张远安;张开生;;CZT和ZFFT频谱细化性能分析及FPGA实现[J];计算机测量与控制;2016年02期
7 袁伟;付锐;马勇;郭应时;杜春臣;;基于高速实车驾驶数据的驾驶人跟车模型研究[J];汽车工程;2015年06期
8 孙玲芳;周加波;林伟健;候志鲁;许锋;;基于BP神经网络和遗传算法的网络舆情危机预警研究[J];情报杂志;2014年11期
9 彭映成;钱海;黎小毛;朱宝良;;基于时间互相关的超声测距信号获取方法[J];仪表技术与传感器;2014年06期
10 游峰;张荣辉;王海玮;温惠英;徐建闽;;基于纵向安全距离的超车安全预警模型[J];华南理工大学学报(自然科学版);2013年08期
相关博士学位论文 前2条
1 张勇刚;道路交通事故再现及预防关键技术研究[D];华南理工大学;2015年
2 吴涛;考虑驾驶员避撞行为特性的汽车前方防碰撞系统研究[D];吉林大学;2014年
相关硕士学位论文 前10条
1 明廷友;智能汽车的轨迹跟随控制研究[D];吉林大学;2016年
2 郑磊;汽车纵向主动避撞控制方法研究[D];西华大学;2014年
3 于立勇;基于车路协同安全距离模型的车速引导系统研究[D];北京交通大学;2014年
4 李丽军;基于机器人双目立体视觉的三维重建[D];太原理工大学;2012年
5 王兴伟;基于DSP的汽车纵向避撞报警技术研究[D];山东理工大学;2012年
6 苏靖;车辆主动安全中碰撞临界安全车距算法研究[D];湖南大学;2011年
7 李英杰;汽车主动安全系统警告触发方式研究[D];吉林大学;2011年
8 闫新星;汽车三维安全防撞预警系统的设计与开发[D];太原理工大学;2011年
9 张广祥;基于驾驶行为的汽车主动防撞预警系统的安全车距研究[D];吉林大学;2011年
10 曾翼;基于ARM+FMCW雷达的汽车防撞报警系统的研究[D];华南理工大学;2011年
,本文编号:2408988
本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/2408988.html