当前位置:主页 > 科技论文 > 信息工程论文 >

基于自适应最稀疏时频分析的阶次方法及应用

发布时间:2019-01-24 21:10
【摘要】:自适应最稀疏时频分析(Aadaptive and Sparsest Time-Frequency Analysis,ASTFA)是一种新的时频分析方法,该方法将信号分解转化为最优化问题,在优化的过程中实现信号的自适应分解。为解决ASTFA方法初始相位函数的选择问题,采用了分辨率搜索改进的ASTFA方法,并进一步结合阶次分析方法提出了基于ASTFA的阶次方法。该方法首先采用改进的ASTFA方法对原始信号进行分解同时获得分量的瞬时幅值,然后对瞬时幅值进行阶次分析从而提取故障特征信息。将该方法应用于变速齿轮传动过程中的时变非平稳振动信号的分析与处理,仿真与实验分析表明该方法能够准确提取变速齿轮的故障特征信息,具有一定的优越性。
[Abstract]:Adaptive most sparse time-frequency analysis (Aadaptive and Sparsest Time-Frequency Analysis,ASTFA) is a new time-frequency analysis method, which transforms signal decomposition into optimization problem and realizes adaptive signal decomposition in the process of optimization. In order to solve the problem of selecting initial phase function of ASTFA method, an improved ASTFA method based on resolution search is adopted, and the order method based on ASTFA is proposed in combination with order analysis method. The improved ASTFA method is used to decompose the original signal and obtain the instantaneous amplitude of the component at the same time. Then the order of the instantaneous amplitude is analyzed to extract the fault feature information. The method is applied to the analysis and processing of time-varying non-stationary vibration signals in the transmission process of variable speed gear. The simulation and experimental analysis show that the method can accurately extract the fault characteristic information of the gear with variable speed and has certain advantages.
【作者单位】: 湖南大学汽车车身先进设计制造国家重点实验室;
【基金】:国家自然科学基金资助项目(51375152)
【分类号】:TN911.7

【相似文献】

相关期刊论文 前4条

1 黄俊钦,张继志;一种同时辨识模型阶次和参数的方法[J];仪器仪表学报;1984年04期

2 赵凯;李本威;李冬;王永华;孙涛;;基于阶次小波包的转子加速阶段振动故障研究[J];航空计算技术;2013年05期

3 黄俊钦,刘整社;一种同时估计ARMA模型阶次与参数的线性算法[J];仪器仪表学报;1987年01期

4 ;[J];;年期



本文编号:2414863

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/2414863.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户9b6bd***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com