基于稀疏表示的面向对象极化SAR图像分类
[Abstract]:Polarization SAR image classification as one of the important directions of remote sensing image processing and research has been paid more and more attention. Since the presence of a large number of noise points in polarized SAR data will seriously affect the further processing and research of the image, how to overcome the noise interference, extract the effective features and classify the polarimetric SAR image is a key problem in the polarimetric SAR image classification. In order to solve the above problems, this paper introduces the idea of object-oriented and sparse representation theory. The idea of object oriented classifies objects by initial segmentation to suppress the interference of a large number of noise points, and the robustness of sparse representation theory to noise also improves the correctness of classification. The combination of the two algorithms can obtain a good classification result. The four main contents of this paper are as follows: 1. The polarimetric SAR image is segmented initially. In this paper, the texture information is combined with the statistical region merging algorithm, and the Bhattacharyya distance merging criterion and the statistical region merging criterion are used to obtain more accurate image segmentation results. The extraction of texture information is obtained through the improved LBP operator, the locally consistent LBP operator (RHLBP operator), which can better distinguish different types of texture information by setting a threshold. And can stably express the same kind of texture information. 2. Color features are applied to object-oriented polarimetric SAR image classification. Polarimetric SAR data can not represent the real color information of ground objects. In the traditional classification algorithm, the color information is not used to provide classification basis. However, the pseudo-color images synthesized by polarization features can effectively express the visual information of ground objects. In this paper, the color feature of pseudo-color image is introduced into the classification algorithm, and the validity of the color feature used in polarimetric SAR image classification is verified. 3. A new dictionary updating algorithm based on raw data is proposed. The dictionary used for sparse representation is composed of dictionary atoms randomly selected from the data of known class labels. It is very likely that there will be noise points in the dictionary or that the dictionary atoms can not well represent other similar data. In order to obtain a more efficient dictionary for sparse representation classification, a new dictionary updating method is proposed in this paper. This method selects good dictionary atoms in the original dictionary to form a new dictionary, and better classification results can be obtained under the premise that the dictionary size is the same. An improved joint sparse representation algorithm is proposed. In order to reduce the amount of computation generated by single pixel classification in sparse representation classification, a joint sparse representation algorithm is introduced and improved. The original joint sparse representation algorithm uses all pixel points in the global segmentation region to obtain common patterns. Because the size of the segmentation region obtained by this algorithm is inconsistent and most of the segmented regions contain too many pixels, The result of joint sparse representation classification is not good. In this paper, the pixel points in the segmented region are divided into a fixed number of data sets for joint sparse representation classification, and the statistical classification results are used to classify the whole segmented region according to the statistics, and better classification results can be obtained.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TN957.52
【相似文献】
相关期刊论文 前10条
1 李映;张艳宁;许星;;基于信号稀疏表示的形态成分分析:进展和展望[J];电子学报;2009年01期
2 赵瑞珍;王飞;罗阿理;张彦霞;;基于稀疏表示的谱线自动提取方法[J];光谱学与光谱分析;2009年07期
3 杨蜀秦;宁纪锋;何东健;;基于稀疏表示的大米品种识别[J];农业工程学报;2011年03期
4 史加荣;杨威;魏宗田;;基于非负稀疏表示的人脸识别[J];计算机工程与设计;2012年05期
5 高志荣;熊承义;笪邦友;;改进的基于残差加权的稀疏表示人脸识别[J];中南民族大学学报(自然科学版);2012年03期
6 朱杰;杨万扣;唐振民;;基于字典学习的核稀疏表示人脸识别方法[J];模式识别与人工智能;2012年05期
7 耿耀君;张军英;袁细国;;一种基于稀疏表示系数的特征相关性测度[J];模式识别与人工智能;2013年01期
8 张疆勤;廖海斌;李原;;基于因子分析与稀疏表示的多姿态人脸识别[J];计算机工程与应用;2013年05期
9 李正周;王会改;刘梅;丁浩;金钢;;基于形态成分稀疏表示的红外小弱目标检测[J];弹箭与制导学报;2013年04期
10 胡正平;赵淑欢;李静;;基于块稀疏递推残差分析的稀疏表示遮挡鲁棒识别算法研究[J];模式识别与人工智能;2014年01期
相关会议论文 前3条
1 何爱香;刘玉春;魏广芬;;基于稀疏表示的煤矸界面识别研究[A];虚拟运营与云计算——第十八届全国青年通信学术年会论文集(上册)[C];2013年
2 樊亚翔;孙浩;周石琳;邹焕新;;基于元样本稀疏表示的多视角目标识别[A];2013年中国智能自动化学术会议论文集(第五分册)[C];2013年
3 葛凤翔;任岁玲;郭鑫;郭良浩;孙波;;微弱信号处理及其研究进展[A];中国声学学会水声学分会2013年全国水声学学术会议论文集[C];2013年
相关博士学位论文 前10条
1 李进明;基于稀疏表示的图像超分辨率重建方法研究[D];重庆大学;2015年
2 王亚宁;基于信号稀疏表示的电机故障诊断研究[D];河北工业大学;2014年
3 姚明海;视频异常事件检测与认证方法研究[D];东北师范大学;2015年
4 黄国华;蛋白质翻译后修饰位点与药物适应症预测方法研究[D];上海大学;2015年
5 王瑾;基于稀疏表示的数据收集、复原与压缩研究[D];北京工业大学;2015年
6 王文卿;基于融合框架与稀疏表示的遥感影像锐化[D];西安电子科技大学;2015年
7 解虎;高维小样本阵列自适应信号处理方法研究[D];西安电子科技大学;2015年
8 秦振涛;基于稀疏表示及字典学习遥感图像处理关键技术研究[D];成都理工大学;2015年
9 薛明;基于稀疏表示的在线目标跟踪研究[D];上海交通大学;2014年
10 孙乐;空谱联合先验的高光谱图像解混与分类方法[D];南京理工大学;2014年
相关硕士学位论文 前10条
1 王道文;基于稀疏表示的目标跟踪算法研究[D];华南理工大学;2015年
2 李哲;基于稀疏表示和LS-SVM的心电信号分类[D];河北大学;2015年
3 孙雪青;Shearlet变换和稀疏表示相结合的甲状腺结节图像融合[D];河北大学;2015年
4 吴丽璇;基于稀疏表示的微聚焦X射线图像去噪方法[D];华南理工大学;2015年
5 赵孝磊;基于图像分块稀疏表示的人脸识别算法研究[D];南京信息工程大学;2015年
6 黄志明;基于辨别式稀疏字典学习的视觉追踪算法研究[D];华南理工大学;2015年
7 张铃华;非约束环境下的稀疏表示人脸识别算法研究[D];南京信息工程大学;2015年
8 贺妍斐;基于稀疏表示与自适应倒易晶胞的遥感图像复原方法研究[D];南京信息工程大学;2015年
9 杨烁;电能质量扰动信号的稀疏表示/压缩采样研究[D];西南交通大学;2015年
10 应艳丽;基于低秩稀疏表示的目标跟踪算法研究[D];西南交通大学;2015年
,本文编号:2420288
本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/2420288.html