基于混沌理论的弱信号检测方法的研究
[Abstract]:Weak signal detection has been widely used in communication, radar and other fields. Detection of weak signal in strong noise background is an important research hotspot in modern information theory. It also urges people to explore and study new theory and method of weak signal detection. Traditional weak signal detection methods in time domain are often limited by the signal-to-noise ratio (SNR) threshold. In recent years, with the study of chaos theory in nonlinear science, a new way of thinking is provided for solving the problem. The detection method based on chaos theory overcomes the shortcomings of traditional methods and can detect lower signal-to-noise ratio (SNR) signals, which provides a new theory and method for weak signal detection. In this paper, based on the analysis of chaotic dynamical system, the Lyapunov exponent is taken as the criterion of chaos recognition by taking the Duffing map of Holmes type as the research object. The critical threshold of dynamic equation from chaotic state to periodic state is obtained by QR decomposition method. The basic principle and detection method of weak signal detection using chaotic Duffing oscillator are analyzed in detail. The feasibility of the detection algorithm based on the phase locus change to judge whether the signal to be detected contains the target signal or not is verified, and the detection of the signal with unknown frequency is verified. The sliding mode variable structure control method in control theory is used to improve the Holmes type Duffimg system. The simulation results show that the improved chaotic Duffing system can effectively suppress noise and detect the frequency of weak signal by the power spectrum of the system. Based on the support vector machine theory, genetic algorithm and particle swarm optimization algorithm, a one-step prediction model is established for short-term prediction of chaotic signals. The phase space reconstruction parameters and support vector machine model parameters are combined and optimized simultaneously. According to the obtained optimal parameters, the prediction model is established, and the accuracy of the model is verified by chaotic time series. At the same time, the signals mixed with chaotic noise and weak signals are simulated and compared with the other two traditional parameters. The results show that the proposed method is better than the traditional parameter calculation method in detecting performance.
【学位授予单位】:西安科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN911.23
【参考文献】
相关期刊论文 前10条
1 夏均忠;刘远宏;冷永刚;葛纪桃;;微弱信号检测方法的现状分析[J];噪声与振动控制;2011年03期
2 李目;何怡刚;周少武;刘祖润;;一种差分进化算法优化小波神经网络及其在弱信号检测中的应用[J];计算机应用与软件;2010年03期
3 唐耀华;高静怀;包乾宗;;一种新的选择性支持向量机集成学习算法[J];西安交通大学学报;2008年10期
4 陆振波;蔡志明;姜可宇;厉春生;;基于最小二乘支持向量机的混沌背景弱信号检测[J];数据采集与处理;2008年05期
5 蔡俊伟;胡寿松;陶洪峰;;基于选择性支持向量机集成的混沌时间序列预测[J];物理学报;2007年12期
6 兀旦晖;赵晨飞;韩楠;杨帆;;混沌同步在弱信号检测中的应用研究[J];计算机测量与控制;2007年11期
7 姜可宇;蔡志明;王平波;陆振波;;基于RBF神经网络模型的混沌背景下谐波信号提取[J];武汉理工大学学报(交通科学与工程版);2007年05期
8 陆振波;蔡志明;姜可宇;;基于改进的C-C方法的相空间重构参数选择[J];系统仿真学报;2007年11期
9 董海鹰;赵向阳;;基于非线性微分方程的混沌产生和辨识方法研究[J];传感技术学报;2006年01期
10 崔万照,朱长纯,保文星,刘君华;混沌时间序列的支持向量机预测[J];物理学报;2004年10期
相关博士学位论文 前2条
1 吴冬梅;基于达芬振子的微弱信号检测方法研究[D];哈尔滨工程大学;2010年
2 席剑辉;混沌时间序列的长期预测方法研究[D];大连理工大学;2005年
相关硕士学位论文 前3条
1 李现美;基于GA-PSO的应急物资储备中心选址研究[D];河北工程大学;2014年
2 张莉;基于小波—混沌理论的脑电信号分析在癫痫诊断中的应用[D];吉林大学;2009年
3 李虎明;小信号混沌检测研究[D];西安理工大学;2005年
,本文编号:2426206
本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/2426206.html