当前位置:主页 > 科技论文 > 信息工程论文 >

平面天线阵列产生时间反演聚焦场的控制方法及应用研究

发布时间:2019-02-22 07:25
【摘要】:研究基于电磁波的微粒捕获和操控,对人类探寻电磁波与物质相互作用规律,拓展电磁波在粒子物理、胶体物理、生命科学、材料科学、芯片实验室等领域中的应用,具有非常重要的科学研究价值和意义。同时,也会对物理、化学、生物等基础学科之间的相互交叉发展带来重要影响。为探索利用光频段以下的电磁波捕获和操控微粒,本文基于平面天线阵列和TR技术,提出了多种高强度聚焦场产生方法,包括单点、多点以及中空环形等,研究了不同聚焦场对瑞利微粒的力学特性,数值证实了光频段以下的高强度聚焦场对瑞利微粒具备一定的捕获与操控能力。全文主要研究内容如下:首先,提出一种单点高强度时间反演聚焦场的产生方法和系统装置,研究了平面时间反演镜(Planar Time Reversal Mirror,P-TRM)的布置方式和聚焦位置对单点高强度聚焦场的影响,并基于该聚焦场,提出了一种单微粒捕获和操控的电磁镊。研究发现,采用双层P-TRM更有利于产生高强度聚焦场,特别是以极化方向相同的方式布置的双层P-TRM能够产生更高电磁强度的单点聚焦场,并且产生的单点高强度聚焦场不会因聚焦位置的改变而变化。同时,进一步研究了单点高强度聚焦场的力学特性及其影响因素,发现对于瑞利微粒,微粒半径越大,在单点高强度聚焦场中所受到的梯度力越大;对于高折射率瑞利微粒,微粒与环境媒质的相对折射率越大,在单点高强度聚焦场中所受到的梯度力越大,但是,对于低折射率瑞利微粒,单点高强度聚焦场则无法捕获;如果提高P-TRM的输入功率,可增强单点高强度聚焦场对瑞利微粒的梯度力。通过数值仿真,理论证明了单点高强度聚焦场对高折射率瑞利微粒的捕获和操控能力。其次,在单点高强度聚焦场研究的基础上,基于反相电场相消原理,提出了一种新型的高强度聚焦场产生方法。该方法能够产生小间距多点高强度聚焦场,可同时操控和捕获多个微粒,大幅度地提升了高强度聚焦场对多个微粒的操纵和捕获能力。通过全波数值仿真,研究了有三个聚焦点的高强度聚焦场的产生,分析了聚焦场对三个a=1mm聚苯乙烯微粒的作用力大小,理论证明了多点高强度聚焦场具备同时捕获与操控多个高折射率瑞利微粒的能力。最后,基于两组正交的双高强度聚焦场叠加,提出了一种产生中空环形高强度聚焦场的方法。并且,研究了预期聚焦位置点间距对中空环形高强度聚焦场的影响,分析了中空环形高强度聚焦场对低折射率瑞利微粒的力学作用效果。研究发现,电磁波频率为4.3GHz时,产生中空环形高强度聚焦场的预期聚焦位置点间距D的取值范围为:43.75mm(27)D(27)87.5mm,在此空间距离范围内,中空环形高强度聚焦场产生的梯度力,可实现对低折射率瑞利微粒的捕获与操控。
[Abstract]:This paper studies particle capture and manipulation based on electromagnetic wave, explores the law of interaction between electromagnetic wave and matter, and expands the application of electromagnetic wave in particle physics, colloid physics, life science, material science, chip laboratory, etc. Has very important scientific research value and significance. At the same time, it will also have an important impact on the development of physics, chemistry, biology and other basic disciplines. In order to explore the use of electromagnetic waves below the optical frequency band to capture and manipulate particles, based on planar antenna array and TR technology, this paper presents a variety of high-intensity focusing field generation methods, including single point, multi-point and hollow ring, etc. The mechanical properties of Rayleigh particles with different focusing fields are studied. The numerical results show that the high intensity focusing fields below the optical frequency band have a certain ability to capture and manipulate Rayleigh particles. The main contents of this paper are as follows: firstly, a method and a system device are proposed to generate the single point high intensity time inversion focusing field, and the plane time inversion mirror (Planar Time Reversal Mirror, is studied. Based on the P-TRM (single point high intensity focusing field), a single particle trapping and manipulating electromagnetic forceps is proposed. It is found that the double layer P-TRM is more advantageous to produce the high intensity focusing field, especially the double layer P-TRM with the same polarization direction can produce the single point focusing field with higher electromagnetic intensity. And the single-point high-intensity focusing field will not change with the change of focusing position. At the same time, the mechanical properties of single point high intensity focusing field and its influencing factors are further studied. It is found that for Rayleigh particles, the larger the particle radius is, the greater the gradient force is in the single point high intensity focusing field. For high refractive index Rayleigh particles, the larger the relative refractive index between particles and ambient media, the greater the gradient force in a single point high intensity focusing field, but for low refractive index Rayleigh particles, a single point high intensity focusing field cannot be captured. If the input power of P-TRM is increased, the gradient force of single point high intensity focusing field on Rayleigh particles can be enhanced. Through numerical simulation, the ability of capturing and manipulating Rayleigh particles with high refractive index by single point high intensity focusing field is proved theoretically. Secondly, based on the research of single-point high-intensity focusing field and the principle of inverse-phase electric field elimination, a new high-intensity focusing field generation method is proposed. This method can produce multi-point high-intensity focusing field with small spacing, and can control and capture multiple particles simultaneously, which greatly improves the ability of high-intensity focusing field to manipulate and capture multiple particles. The generation of high intensity focusing field with three focal points was studied by full-wave numerical simulation. The force of focusing field on three a=1mm polystyrene particles was analyzed. It is proved theoretically that the multi-point high-intensity focusing field has the ability to capture and manipulate multiple high-refractive index Rayleigh particles simultaneously. Finally, based on the superposition of two sets of orthogonal double high intensity focusing fields, a method for generating hollow annular high intensity focusing fields is proposed. Furthermore, the effect of the expected focus point spacing on the hollow ring high intensity focusing field is studied, and the mechanical effect of the hollow ring high intensity focusing field on the low refractive index Rayleigh particles is analyzed. It is found that when the electromagnetic wave frequency is 4.3GHz, the range of expected focus point spacing D for producing a hollow annular high-intensity focusing field is as follows: 43.75mm (27) D (27) 87.5 mm, within this space distance, The gradient-force generated by the high-intensity hollow annular focusing field can capture and manipulate the Rayleigh particles with low refractive index.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN820.15

【相似文献】

相关期刊论文 前10条

1 毕思文;数字人体微观研究——量子人体的时间反演[J];中国医学影像技术;2005年06期

2 郭权和;;用非线性折射产生时间反演的波前[J];激光与光电子学进展;1978年05期

3 丁帅;王秉中;葛广顶;王多;赵德双;;基于时间透镜原理实现微波信号时间反演[J];物理学报;2012年06期

4 章志敏;;时间反演操作的表示方法及其等效表达[J];宁夏大学学报(自然科学版);2013年02期

5 张光e,

本文编号:2427968


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/2427968.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户d860b***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com