基于拉曼激光雷达的全天时大气水汽含量探测与分析
[Abstract]:Atmospheric water vapor is an important atmospheric meteorological parameter. It is one of the most active gas components in the atmosphere. Water vapor is an indispensable factor in the process of cloud-forming precipitation and plays an important role in a series of atmospheric processes such as global hydrological cycle meteorology and atmospheric dynamics. These important effects of water vapor are closely related to water vapor content and its spatio-temporal distribution. In view of the rapid spatio-temporal variation of water vapor, the high-precision atmospheric water vapor detection during the whole day is of great scientific significance and application value for the study of precipitation, the diffusion of atmospheric pollutants, the formation and dissipation of haze and haze, and so on. In view of the interference of strong solar background light on weak water vapor Raman scattering signal in all-day detection, the simulation of the existing Raman lidar system is carried out firstly, and the field of view angle of reception is discussed in detail. The influence of filter bandwidth and other main parameters on all-day detection performance is studied. The optimized design and experimental verification of all-day Lidar system for atmospheric water vapor detection are completed. According to the characteristics of Lidar echo signal and noise, a high precision filtering method based on wavelet de-noising for daytime solar background light is proposed. The decomposition layer number and wavelet basis function are discussed. The influence of threshold function and threshold selection on de-noising results is studied. Through a lot of data analysis and comparison of de-noising evaluation function, the wavelet-based sym6-8, decomposition layer is used as 5 layers, and the improved threshold function and improved universal threshold method are adopted. Can achieve a better de-noising effect. All-day lidar detection experiments and data inversion are carried out. The results show that the range of atmospheric water vapor detection can be increased from 1.5-2km to more than 3km in the daytime. The validity of wavelet threshold de-noising algorithm and the feasibility of all-day water vapor detection are verified. From November 2013 to July 2016, a long-term statistical analysis of atmospheric water vapor content in Xi'an region was carried out based on the data from Lidar remote Sensing Center and Meteorological Station of Xi'an University of Technology. The variation and occupation ratio of water vapor content in different height layers are obtained. The temporal and spatial variation characteristics and seasonal variation characteristics of water vapor content are analyzed, as well as the change trend of water vapor content before and after special weather processes such as rainfall and snow. The correlation between water vapor content and meteorological factors is discussed. The results show that water vapor content is positively correlated with surface temperature and water vapor pressure, negatively correlated with atmospheric pressure, and strongly correlated with precipitation, precipitation days and precipitation efficiency. It provides a powerful basis for the use of lidar detection to guide agricultural production and artificial precipitation.
【学位授予单位】:西安理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P412.25;TN958.98
【参考文献】
相关期刊论文 前10条
1 吕立蕾;;多光谱激光雷达小波去噪效果评价体系[J];海洋测绘;2016年04期
2 于杰;车慧正;陈权亮;朱君;桂柯;郑宇;;2010—2012年我国西北地区沙尘个例气溶胶特征分析[J];气象与环境科学;2016年02期
3 段慧;张丹;范力;杨洪霞;;西充河自动监测断面表层溶解氧季节变化及影响分析[J];四川环境;2015年05期
4 杨瑞鸿;王研峰;黄武斌;郑泳宜;;半干旱地区大气水汽含量反演分析[J];现代农业科技;2015年01期
5 赵一鸣;李艳华;商雅楠;李静;于勇;李凉海;;激光雷达的应用及发展趋势[J];遥测遥控;2014年05期
6 郭艳君;丁一汇;;1958~2005年中国高空大气比湿变化[J];大气科学;2014年01期
7 韩洁;李建芳;;2011年陕西省强秋淋天气分析[J];陕西气象;2012年06期
8 张秉祥;韩军彩;陈静;刘萍;;华北地区空中水汽含量与降水量的关系[J];干旱气象;2012年02期
9 张永涛;焦振峰;马鑫鑫;侯俊岭;;漯河单站气象要素与降水概率的初步研究[J];气象与环境科学;2011年S1期
10 赵松;江汉红;张朝亮;柯泽贤;;基于改进小波阈值函数的雷达信号去噪[J];兵工自动化;2011年07期
相关会议论文 前1条
1 刘艳华;李铁林;郭献林;马鑫鑫;;河南省空中水汽资源的来源、分布及收支[A];第十五届全国云降水与人工影响天气科学会议论文集(Ⅰ)[C];2008年
相关博士学位论文 前1条
1 李霞;西北半干旱区大气可降水量和气溶胶光学特性的反演与分析[D];兰州大学;2012年
相关硕士学位论文 前8条
1 王斌;寒冷地区既有居住建筑外窗节能改造研究[D];长安大学;2013年
2 韩军彩;华北地区空中水汽含量的演变特征[D];南京信息工程大学;2011年
3 袁红梅;基于小波变换的图像去噪算法与实现[D];上海交通大学;2008年
4 宛霞;用卫星资料和常规资料联合估算水汽含量的研究[D];兰州大学;2007年
5 姚胜利;地震信号的小波去噪方法研究[D];中南大学;2007年
6 张旭莲;小波变换及其在地震资料去噪中的应用[D];西安科技大学;2006年
7 翟清斌;利用地基GPS遥感大气水汽含量的研究[D];清华大学;2005年
8 樊春玲;低频振动下机械故障诊断技术的研究[D];燕山大学;2001年
,本文编号:2465448
本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/2465448.html