当前位置:主页 > 科技论文 > 信息工程论文 >

生理时间序列的符号化和非线性特征分析

发布时间:2020-09-15 11:00
   人体是多个非线性生理系统构成的综合体,生理系统之间、器官之间以及器官的不同成分之间都存在不同程度的非线性相互作用。如何通过表征生理系统本身的非线性特征以及生理系统之间相互作用的改变来评估不同的生理、病理状态是生理系统非线性分析的根本问题。本文利用符号化方法简化生理时间序列非线性分析中的概率估计,并按照生理变量增加的研究主线分别从单一变量的非线性特征(符号熵值分析和时间不可逆)、双变量的因果关联性(符号转移熵)和多变量之间的交互关系(网络方法)三个角度对不同生理、病理的时间序列进行非线性特征分析,具体如下:首先,针对符号化对时间序列分析的影响,利用Logistic序列和心率信号对静态和动态符号熵值方法的非线性复杂度提取效果进行了系统的对比分析,充分验证了控制参数对时间序列符号化的影响,并发现需要根据时间序列的结构化或动力学特征的不同选择相应的符号化方法。文章发现了心率信号中大量存在的等值状态,并论证了等值分布包含的重要的心脏调节信息及其对排列类型和排列熵的影响。另外,针对如何结合静态、动态符号动力学信息的问题,从符号化、编码和序列分析三个途径总结了可使用的方法,提出了利用联合熵将两种类型的符号序列相结合的方法,更有效地提取了心率信号的非线性特征,并发现静态和动态符号化方法提取的符号动力学信息不同。心率信号的符号熵值分析有助于加深对心脏非线性特征的认知以及对心衰、年老相关的复杂度丢失理论的理解。其次,针对心率和脑电信号时间不可逆的量化分析,发现了时间不可逆统计定义和相空间理论在数学上的相似性,论证了利用排列类型代替高维向量的可行性,指出并验证了正反序列联合概率差异性和序列对称向量概率差异性的一致性,论证了空排列包含的系统非线性特征及其对时间不可逆分析的影响,提出了基于减法的排列概率差异性参数Ys。在癫痫脑电信号分析中,验证了脑电信号固有的非线性特征,发现了癫痫发作期脑电信号异常高的时间不可逆,提出了癫痫脑电周期性非线性特征的假设。在心率信号的非线性分析中,研究了等值状态对基于排列类型的时间不可逆的影响,发现等值排列类型可产生意味着时间可逆的自对称形式,论证了基于等值排列的时间不可逆有更加合理、可靠的非线性特征提取效果。另外,论证了多尺度分析对心率等值分布的影响,讨论了香农熵和时间不可逆在非线性特征分析中的差异性。心脏和大脑单一器官的时间不可逆分析为理解复杂生理系统的非平衡性以及相关生理、病理的特征等提供了帮助。再次,针对不同睡眠状态下心脑信号之间关联性的特征,利用静态和动态符号转移熵量化方法进行了研究,并从系统的动态关联性以及相互之间信息量的影响两个角度对转移熵进行了解析,研究了心脏和大脑信号之间以及心电信号和不同波段的脑电活动之间存在的信息交换量,发现心脑信号之间信息关联性随着睡眠的加深而降低,而心电信号和不同脑波段的信息交换量随着频段频率的增加而增加。心电信号至脑电的信息流受睡眠影响更大,因而能更加有效地反映睡眠状态的变化,并且心电活动至脑电信号的信息量高于反向脑电至心电信号的信息量,表明在心脑信号的信息交互作用中,心脏活动是驱动因素,而脑电活动是响应因素。另外,对符号序列编码、排列和相空间、采样频率之间的理论和应用中的关系进行了充分的讨论。心脑信息关联性的量化分析提供了对心脑信号之间因果关系的新认识,并且为睡眠分期的研究提供了有价值的信息。最后,针对多生理变量的网络关联性,利用排列转移熵量化生理节点之间的连接并构建了有向加权的生理网络,分析了癫痫脑网络和睡眠生理器官网络的统计特征。在脑信息网络中,癫痫患者脑通道之间、各个脑区和整个大脑的信息传输总量以及信息流概率分布的香农熵值都低于健康人,表明癫痫抑制了不同脑区之间的信息交换以及脑区交互活动复杂度。在生理器官网络中,器官之间信息传输量以及各器官的信息流入、流出信息总量和信息交互的复杂度都随着睡眠深度的增加而降低,表明人体各器官在睡眠状态下存在普遍的信息交互关联性,但是器官之间信息交换的活跃度会随着睡眠的加深而有所下降。另外,结合癫痫和睡眠的生理、病理特点,讨论了生理信息交换网络的特征。脑网络和生理器官网络的分析对探索生理系统中复杂的相互作用的本质以及了解相关癫痫和睡眠的特点起到重要的作用。本文在生理时间序列的符号化和非线性特征分析中,提出了符号联合熵和基于排列的时间不可逆分析,验证了符号化和等值心率对非线性分析的重要影响,提出了癫痫脑电周期性非线性特征的假设,研究了生理器官之间的关联性并构建了生理信息交换网络,取得一定成果但也发现一些需要进一步研究的问题。
【学位单位】:南京邮电大学
【学位级别】:博士
【学位年份】:2019
【中图分类】:O211.61;R33

【相似文献】

相关期刊论文 前10条

1 张笑东;夏筱筠;蒲宝明;公绪超;王帅;;基于非稳态时间序列的生理控制模型研究[J];系统工程理论与实践;2020年02期

2 孙其法;闫秋艳;闫欣鸣;;基于多样化top-k shapelets转换的时间序列分类方法[J];计算机应用;2017年02期

3 王金策;杨宁;;时间序列趋势预测[J];现代计算机(专业版);2017年02期

4 彭佳星;肖基毅;;基于分型转折点的证券时间序列分段表示法[J];商;2016年31期

5 刘伟龙;;基于ARMA模型的股价预测及实证研究[J];智富时代;2017年02期

6 周仰;;《漫长的告别》(年度资助摄影图书)[J];中国摄影;2017年04期

7 王嵬;;王嵬作品[J];当代油画;2017年07期

8 刘明华;张晋昕;;时间序列的异常点诊断方法[J];中国卫生统计;2011年04期

9 郭崇慧;苏木亚;;基于独立成分分析的时间序列谱聚类方法[J];系统工程理论与实践;2011年10期

10 王佳林;王斌;杨晓春;;面向不确定时间序列的分类方法[J];计算机研究与发展;2011年S3期

相关会议论文 前10条

1 马俊;曹成度;闵阳;周吕;;基于主成分分析去除GNSS站坐标时间序列有色噪声[A];第十一届中国卫星导航年会论文集——S05 空间基准与精密定位[C];2020年

2 周家斌;张海福;杨桂英;;多维多步时间序列预报方法及其应用[A];中国现场统计研究会第九届学术年会论文集[C];1999年

3 张可;李媛;柴毅;黄磊;;基于分段趋势的符号化时间序列聚类表示[A];第37届中国控制会议论文集(D)[C];2018年

4 张立波;庞蓉蓉;王勇;黄敏;何成涛;傅强;曲贤敏;仲昭衍;;基于时间序列的随机质控设计与应用[A];中国输血协会第九届输血大会论文专辑[C];2018年

5 徐光晶;;统计学在大地电磁测深时间序列处理中的应用[A];2017中国地球科学联合学术年会论文集(二十九)——专题57:电磁地球物理学研究及其应用[C];2017年

6 毛宇清;王咏青;王革丽;;支持向量机方法应用于理想时间序列的预测研究[A];中国气象学会2008年年会气候预测研究与预测方法分会场论文集[C];2008年

7 吴丽娜;黄领梅;沈冰;吕继强;;黄河上游降水时间序列混沌特性识别与预测年限分析[A];水系统与水资源可持续管理——第七届中国水论坛论文集[C];2009年

8 吴坚忠;路子愚;郑应平;;时间序列社会悖论模型及分析[A];1989年控制理论及其应用年会论文集(上)[C];1989年

9 雷敏;孟光;谢洪波;Kerreie Mengersen;Peter Bartlett;;嵌入维数对复杂时间序列的熵分析的影响研究[A];中国力学大会-2015论文摘要集[C];2015年

10 林忠辉;莫兴国;薛玲;;用NDVI时间序列确定作物物侯和作物类型判别[A];第十四届全国遥感技术学术交流会论文摘要集[C];2003年

相关重要报纸文章 前10条

1 王晓宝 杨永恒 永安期货;浅析波动率的均值回复特征[N];期货日报;2017年

2 东证期货 王爱华 杨卫东;两年涨跌轮回 秋季普遍下跌[N];期货日报;2009年

3 国家统计局核算司 吕峰;不变价GDP时间序列数据的构造[N];中国信息报;2016年

4 ;《时间序列与金融数据分析》[N];中国信息报;2004年

5 何德旭 王朝阳;时间序列计量经济学:协整与有条件的异方差自回归[N];中国社会科学院院报;2003年

6 刘俏;让数据坦白真相[N];21世纪经济报道;2003年

7 卞纪;我国多时间序列湿地遥感制图完成[N];中国气象报;2011年

8 权证一级交易商 国信证券;正股走势及时间序列主导下半年权证市场运行结构[N];证券时报;2006年

9 广发期货股指研究小组 谢贞联;Hurst指数提示市场升势或将形成[N];上海证券报;2012年

10 丁睿 中粮期货研究院;试论指数HP滤波分析法的应用[N];期货日报;2014年

相关博士学位论文 前10条

1 姚文坡;生理时间序列的符号化和非线性特征分析[D];南京邮电大学;2019年

2 刘海洋;复杂环境下时间序列预测方法研究[D];北京交通大学;2019年

3 石巍巍;大规模多源时间序列预处理与隐藏空间映射分析研究[D];上海交通大学;2018年

4 颜昌;心血管时间序列的图形分析和应用[D];山东大学;2019年

5 张弼尧;基于遥感时序分析的半干旱地区森林生态系统变化研究[D];中国地质大学(北京);2019年

6 黄田;面向超大规模时间序列的异常检测[D];上海交通大学;2015年

7 康峻;基于时间序列遥感数据的植被精细分类与覆盖度反演研究[D];中国科学院大学(中国科学院遥感与数字地球研究所);2018年

8 林蕾;基于循环神经网络模型的遥感影像时间序列分类及变化检测方法研究[D];中国科学院大学(中国科学院遥感与数字地球研究所);2018年

9 丁红;柳江径流分析与预测研究[D];武汉理工大学;2016年

10 周超;集成时间序列InSAR技术的滑坡早期识别与预测研究[D];中国地质大学;2018年

相关硕士学位论文 前10条

1 吴振宇;复杂时间序列的信息熵及其应用[D];北京交通大学;2019年

2 刘彩云;基于时间序列挖掘技术的南水北调工程安全监测数据异常检测[D];华北水利水电大学;2019年

3 武帅;面向时间序列的增量模糊聚类算法研究[D];河南理工大学;2018年

4 陈洋;中高空间分辨率卫星NDVI时间序列数据重建技术研究[D];电子科技大学;2019年

5 蔡晓军;区域GPS坐标时间序列特性分析[D];长安大学;2019年

6 肖宁宁;基于时间序列InSAR技术的成都地区地表沉降研究[D];电子科技大学;2019年

7 靳东明;基于时间序列的地铁列车测速定位系统故障诊断方法[D];北京交通大学;2019年

8 赵子新;基于时间序列新陈代谢法的深基坑变形分析预测[D];上海交通大学;2018年

9 王璇;基于MODIS时间序列的河南主要农作物种植信息提取[D];河南大学;2019年

10 潘壮壮;微博热点话题表示及演化研究[D];安徽理工大学;2019年



本文编号:2818878

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/2818878.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户c4bcf***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com