Analysis and Optimization of Optical Wireless Communication
发布时间:2023-04-07 02:46
有线光通信网络是一个非常依赖大气环境的系统,其光学特性和两个收发器节点的环境干扰都是直接影响通信性能的重要因素。在这种情况下,信号的功率损耗与大气中存在的粒子有着密切的关系,这些粒子会进一步降低通信质量。本文主要研究无线环境下多通道光网路的行为,以及在不同大气气象条件下,光束与粒子的相互作用。本研究主要对传统光通信网路中常用的多波长、信号功率及光学特性进行分析,通过对工作波长和光学参数的分析估计出不同气候下环境的各种不稳定特性的最佳光束对光学特性的影响。然后,分析了多通道技术在不同气候等级下的衰减效应,并利用多种大气模式估计了环境引起的不稳定现象;并详细分析了雾天对光信号的影响,并在此多通道技术下研究了光放大器的性能,将单个光源被分割,在多个通道上复制光信号,从而确保每一个损坏位都有可能接收到光信号,同时也降低了衰减效果。此外,本文还分析了光束发散和收发器孔径随误码率的变化,并将提出的光通信网络方案与传统方案进行了比较,并从接收功率、信噪比、链路余量和质量因子等方面对结果进行了描述。
【文章页数】:106 页
【学位级别】:硕士
【文章目录】:
ACKNOWLEDGEMENT
abstract
摘要
List of Abbreviation
List of Symbols
Chapter #1 :Introduction
1.1 Overview
1.2 Overview of Transceivers in OWCN Communication
1.3 Background
1.4 Modern Period of OWCN
1.5 Challenges in OWCN
1.6 Features of OWCN
1.7 Uses of Optical Wireless Communication Network
1.7.1 Military communication
1.7.2 Satellite and deep-space communication
1.8 System Overview
1.8.1 Source and Detectors in Optics
1.8.2 Multiple Pulse Position Modulator
1.8.3 The Modulator and Transmitter
1.8.3.1 Light Emitting Diode(LED)
1.8.3.2 Laser
1.8.3.3 Laser Diode
1.8.4 The Channel
1.8.4.1 Turbulence
1.8.4.2 Aerosol Scattering
1.8.5 The Mechanism at Receiver End
1.8.5.1 PIN Photodiode
1.8.5.2 Avalanche Photodiode
1.9 Applications of OWCN
1.10 Electromagnetic Spectrum and Light
1.11 Wavelengths
1.11.1 850nm
1.11.2 1330nm
1.11.3 1550nm
1.12 Turbulences in Atmosphere
1.12.1 Fog
1.12.2 Snow
1.12.3 Smoke
1.12.4 Rain
1.12.5 Dust
1.12.6 Absorption
1.12.7 Scattering
1.12.7.1 Rayleigh Scattering
1.12.7.2 Mie(Aerosol)Scattering
1.12.8 Scintillation
1.13 Research Objective
1.14 Original Contributions of This Thesis
Chapter #2:Literature Review
2.1 The Effects of Atmospheric Conditions
2.2 Measurement of BER
2.3 BER Effects of Internal and External Noise
2.4 Flat-top Multi-beam FSO
2.5 Comparison of850nm and1550nm in Controlled Condition
2.6 Scattering Effect on Terrestrial FSO
2.7 Affecting of Rain Attenuation on FSO Link
2.8 WDM-FSO Considering Atmospheric Turbulence
2.9 WDM-MIMO Working Model
2.10 Attenuation Modelling of Fog and Smoke
2.11 Link Budget Optimization of FSO
2.12 Optimization of FSO Using Multi-Beam
2.13 Performance Improvement by Different Transmitter and Receiver Aperture
2.14 Sensitivity of Laser Attenuation
2.15 Multi-Channel Communication in FSO
2.16 Channer Models in FSO
2.17 Optical Link Performance at530nm
2.18 Simulation of Single and Multiple Transceivers
2.19 Beam Divergence and BER
2.20 Improving the performance of BER
2.21 Atmospheric Losses in850nm&1550nm
2.22 Optical wavelengths Comparison
2.23 Application and Challenges of FSO
2.24 Tropical Weather using Multi Beams
2.25 Smoke Attenuation in in Controlled Condition
2.26 Modulator for Ro FSO
2.27 Rain Effects in Libyan Climate
2.28 Scintillation Effect on Free Space Optics
2.29 High Bandwidth in Fog and Snow
2.30 Optical Beam Scattering and Wandering
2.31 Propagation of Optical and Infrared Waves
2.32 Effects of Dust Strome on FSO
Chapter #3:Research Methodology
3.1 Optical Source and Detector
3.1.1 The Transmitter
3.1.2 The Atmosphere
3.1.3 Optical Receiver
3.2 Al NABOULSI Attenuation Measured Model
3.3 Beer Lambert Law for Atmospheric Attenuation
3.4 Kim Kruse Model for Measurement of Optical Attenuation
3.5 Carbonneau’s Model for Rain Attenuation
3.6 Dust Attenuation Model
3.7 Snow Attenuation Model
3.8 Smoke Attenuation Model
3.9 Geometrical Loss
3.10 Signal to Noise Ratio and Bit Error Rate
3.11:Received Power of Rainfall
3.12 Received Power of Fog
3.13 Optical Link Margin
3.14 Design and Simulation of Conventional SISO Link
3.15 Design and Simulation of Proposed Multi-Channel Technique
Chapter #4:Results and Discussion
4.1 Atmospheric Attenuation Models
4.1.1 Dust Attenuation Model
4.1.2 Fog Attenuation Model
4.1.3 Smoke Attenuation Model
4.1.4 Snow Attenuation Model
4.2 Analysis of Bit Error Rate and Signal to Noise Ratio
4.3 Wavelength comparison Analysis
4.4 Rainfall Rate Comparison
4.5 Geometric Loss Analysis
4.6 Received Power Analysis
4.7 Link Margin Analysis
4.8 Q-Factor Analysis
4.9 Analysis of SISO and Multi-channel Model
Conclusion
References
本文编号:3784933
【文章页数】:106 页
【学位级别】:硕士
【文章目录】:
ACKNOWLEDGEMENT
abstract
摘要
List of Abbreviation
List of Symbols
Chapter #1 :Introduction
1.1 Overview
1.2 Overview of Transceivers in OWCN Communication
1.3 Background
1.4 Modern Period of OWCN
1.5 Challenges in OWCN
1.6 Features of OWCN
1.7 Uses of Optical Wireless Communication Network
1.7.1 Military communication
1.7.2 Satellite and deep-space communication
1.8 System Overview
1.8.1 Source and Detectors in Optics
1.8.2 Multiple Pulse Position Modulator
1.8.3 The Modulator and Transmitter
1.8.3.1 Light Emitting Diode(LED)
1.8.3.2 Laser
1.8.3.3 Laser Diode
1.8.4 The Channel
1.8.4.1 Turbulence
1.8.4.2 Aerosol Scattering
1.8.5 The Mechanism at Receiver End
1.8.5.1 PIN Photodiode
1.8.5.2 Avalanche Photodiode
1.9 Applications of OWCN
1.10 Electromagnetic Spectrum and Light
1.11 Wavelengths
1.11.1 850nm
1.11.2 1330nm
1.11.3 1550nm
1.12 Turbulences in Atmosphere
1.12.1 Fog
1.12.2 Snow
1.12.3 Smoke
1.12.4 Rain
1.12.5 Dust
1.12.6 Absorption
1.12.7 Scattering
1.12.7.1 Rayleigh Scattering
1.12.7.2 Mie(Aerosol)Scattering
1.12.8 Scintillation
1.13 Research Objective
1.14 Original Contributions of This Thesis
Chapter #2:Literature Review
2.1 The Effects of Atmospheric Conditions
2.2 Measurement of BER
2.3 BER Effects of Internal and External Noise
2.4 Flat-top Multi-beam FSO
2.5 Comparison of850nm and1550nm in Controlled Condition
2.6 Scattering Effect on Terrestrial FSO
2.7 Affecting of Rain Attenuation on FSO Link
2.8 WDM-FSO Considering Atmospheric Turbulence
2.9 WDM-MIMO Working Model
2.10 Attenuation Modelling of Fog and Smoke
2.11 Link Budget Optimization of FSO
2.12 Optimization of FSO Using Multi-Beam
2.13 Performance Improvement by Different Transmitter and Receiver Aperture
2.14 Sensitivity of Laser Attenuation
2.15 Multi-Channel Communication in FSO
2.16 Channer Models in FSO
2.17 Optical Link Performance at530nm
2.18 Simulation of Single and Multiple Transceivers
2.19 Beam Divergence and BER
2.20 Improving the performance of BER
2.21 Atmospheric Losses in850nm&1550nm
2.22 Optical wavelengths Comparison
2.23 Application and Challenges of FSO
2.24 Tropical Weather using Multi Beams
2.25 Smoke Attenuation in in Controlled Condition
2.26 Modulator for Ro FSO
2.27 Rain Effects in Libyan Climate
2.28 Scintillation Effect on Free Space Optics
2.29 High Bandwidth in Fog and Snow
2.30 Optical Beam Scattering and Wandering
2.31 Propagation of Optical and Infrared Waves
2.32 Effects of Dust Strome on FSO
Chapter #3:Research Methodology
3.1 Optical Source and Detector
3.1.1 The Transmitter
3.1.2 The Atmosphere
3.1.3 Optical Receiver
3.2 Al NABOULSI Attenuation Measured Model
3.3 Beer Lambert Law for Atmospheric Attenuation
3.4 Kim Kruse Model for Measurement of Optical Attenuation
3.5 Carbonneau’s Model for Rain Attenuation
3.6 Dust Attenuation Model
3.7 Snow Attenuation Model
3.8 Smoke Attenuation Model
3.9 Geometrical Loss
3.10 Signal to Noise Ratio and Bit Error Rate
3.11:Received Power of Rainfall
3.12 Received Power of Fog
3.13 Optical Link Margin
3.14 Design and Simulation of Conventional SISO Link
3.15 Design and Simulation of Proposed Multi-Channel Technique
Chapter #4:Results and Discussion
4.1 Atmospheric Attenuation Models
4.1.1 Dust Attenuation Model
4.1.2 Fog Attenuation Model
4.1.3 Smoke Attenuation Model
4.1.4 Snow Attenuation Model
4.2 Analysis of Bit Error Rate and Signal to Noise Ratio
4.3 Wavelength comparison Analysis
4.4 Rainfall Rate Comparison
4.5 Geometric Loss Analysis
4.6 Received Power Analysis
4.7 Link Margin Analysis
4.8 Q-Factor Analysis
4.9 Analysis of SISO and Multi-channel Model
Conclusion
References
本文编号:3784933
本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/3784933.html