当前位置:主页 > 科技论文 > 仪器仪表论文 >

压电叠堆驱动的微操作器系统建模及控制技术研究

发布时间:2018-11-01 10:48
【摘要】:由于人类社会和科学技术中研究对象的不断微细化,微纳操控技术广泛应用于微操作、微装配与微机电技术领域中。作为连接微观系统与宏观系统的核心部件,由压电叠堆微夹持器与微动平台构成的多自由度微操作器在微纳操作任务中具有极其重要的作用。然而,随着微操作器不断向多尺度、柔性化、小型化、高精度和易于控制方向发展,现有的微操作器及控制技术面临众多挑战:1)被操作物体的跨尺度和不规则特征要求微夹持器同时具有行程大、分辨率高、平动夹持、集成传感器和易于控制等优点,而微动平台则需要具有行程大、精度高、自由度多和输出位移解耦等特点。2)压电叠堆致动器的输出位移具有严重的非线性迟滞回环,需要有效补偿迟滞效应并精密控制微动平台的输出位移、微夹持器的输出位移与夹持力。3)对于特定微操作任务,需要将柔顺微夹持器固定在宏动平台上组成宏微夹持系统,以实现操作系统大范围和高精度运动的双重需求。如何有效地探究宏微夹持系统的动力学特性并抑制大范围宏动激起的柔顺微夹持器振动(偏移)一直是亟待解决的难题。针对以上问题,本文设计了由双驱动压电叠堆微夹持器和XY微动平台组成的多自由度微操作器以及包含柔顺压电微夹持器和单自由度宏动平台的宏微夹持系统,重点开展机构静力学与动力学建模、压电叠堆致动器迟滞非线性建模、精密轨迹跟踪控制、宏微夹持系统整体动力学建模以及轨迹规划等方面的研究。通过数值仿真与实验验证相结合,验证了所建模型与提出方法的可行性。论文研究内容分为七章:第一章叙述了论文研究背景及现状。从压电叠堆微操作器系统结构、机构静力学与动力学建模、迟滞非线性建模理论、微纳精密定位控制技术以及大范围宏运动下柔顺机构的振动控制等方面对压电微操作器系统中的关键技术进行阐述。第二章设计了由双驱动压电叠堆微夹持器和XY微动平台构成的多自由度微操作器。采用直圆柔性铰链设计包含桥式放大机构与平行四边形机构、压电叠堆致动器和位置/夹持力应变传感器的双驱动压电叠堆微夹持器。采用混合直圆-叶型柔性铰链设计包含双摇杆机构与平行四边形机构、压电叠堆致动器和激光传感器的XY微动平台。然后使用伪刚体方法建立机构静力学与动力学模型,并通过有限元分析验证系统模型。最后搭建实验系统,分析测试了微夹持器和微动平台的开环特性。第三章提出微夹持器位置/夹持力同步控制策略。在第二章设计的双驱动压电叠堆微夹持器基础上,对微夹持器机构进行分解,将原来的"单输入-双输出"控制问题变为"双输入-双输出"问题,即在采用非线性模糊控制器(NFL)精密跟踪微夹持器左夹持臂输出位移轨迹的同时,使用PI控制器同步调整微夹持器右夹持臂夹持力,从而实现对微夹持器位置/夹持力轨迹的同步控制。为验证位置/夹持力同步控制策略的可行性,进行了4组典型轨迹(方波、正弦、变幅值、变频率)跟踪控制实验。第四章针对压电叠堆致动器的迟滞非线性问题,构建了一种精确表征非对称迟滞特性的Bouc-Wen模型。采用改进遗传算法对非对称Bouc-Wen迟滞模型参数进行辨识,并开展正弦衰减和任意轨迹的迟滞模型预测实验,验证了非对称Bouc-Wen迟滞模型和参数辨识方法的有效性。第五章研究多自由度微操作器的协同控制问题。在第四章建立的Bouc-Wen迟滞模型基础上,根据辨识得到的Bouc-Wen模型参数设计基于迟滞逆模型的前馈控制器,并在前馈控制器的基础上叠加PI控制器构成复合控制器,实现对微动平台输出位移的精密控制。然后将压电叠堆微夹持器固定安装在微动平台上,开展多自由度微操作器的协同控制。即在使用NFL/PI控制器同步、分阶段地控制压电叠堆微夹持器位置/夹持力轨迹的同时,使用复合控制器对压电叠堆微动平台的输出位移轨迹进行精密跟踪控制,实验结果验证了协同控制策略的可行性和有效性。第六章开展了宏微夹持系统动力学建模及轨迹规划研究。将第二章设计的柔顺微夹持器固定安装于伺服电机驱动的单自由度宏动平台上,构成具有大范围和高精度运动的宏微夹持系统。结合使用伪刚体模型、假设模态法和Lagrange方程建立了宏微夹持系统的整体动力学模型,并通过规划宏运动轨迹初步减小大范围宏运动激起的柔顺微夹持器末端夹持臂的振动(偏移)。为验证动力学模型和轨迹规划策略的有效性,搭建了宏微夹持实验系统,并开展不同宏运动轨迹测试实验。实验结果验证了动力学模型和轨迹规划策略的正确性及有效性。第七章对全文工作进行了归纳总结,并对压电叠堆驱动的微纳操作技术进行了展望。
[Abstract]:Because of the continuous micro-refinement of research objects in human society and science and technology, the micro-nano manipulation technology is widely used in the field of micro-electromechanical technology, micro-assembly and micro-electro-mechanical technology. As the core part of the micro-system and macro-system, the multi-degree-of-freedom manipulator composed of piezoelectric stack micro-gripper and micro-motion platform plays an extremely important role in the micro-operation task. however, with that development of multi-scale, flexible, miniaturized, high-precision and easy-to-control directions, the existing dynamometer and control technology face many challenges: 1) the cross-scale and irregular characteristics of the object to be operated require the micro-gripper to have a large stroke at the same time, the invention has the advantages of high resolution, translational clamping, integrated sensor and easy control and the like, and the micro platform needs to have the characteristics of large stroke, high precision, multi-degree of freedom and decoupling of output displacement and the like. it needs to effectively compensate the hysteresis effect and precisely control the output displacement of the micro-motion platform, so as to realize the dual requirement of large-range and high-precision movement of the operating system. How to effectively explore the dynamic characteristics of the macro-micro-clamping system and restrain the vibration (offset) of the compliant micro-gripper excited by the large-range macro-motion has always been a difficult problem to be solved. In view of the above problems, this paper designs a multi-degree-of-freedom actuator composed of double-drive piezoelectric stack micro-gripper and XY micro-motion platform, and macro-micro-clamping system including compliant piezoelectric micro-gripper and single-degree-of-freedom macro-dynamic platform, focusing on mechanism statics and dynamics modeling. The study of hysteresis non-linear modeling, precise trajectory tracking control, macro-micro-clamping system integral dynamics modeling and trajectory planning are studied in this paper. Through the combination of numerical simulation and experimental verification, the feasibility of the proposed model and the proposed method is verified. The research contents of the thesis are divided into seven chapters: Chapter one describes the background and present situation of the thesis. The key technologies in the piezoelectric actuator system are discussed from the aspects of the system structure of the piezoelectric stack, the static and dynamic modeling of the mechanism, the hysteresis nonlinear modeling theory, the micro-nano precise positioning control technology and the vibration control of the compliant mechanism under the large-range macro-motion. The second chapter designs a multi-degree-of-freedom actuator composed of double-drive piezoelectric stack micro-gripper and XY micro-motion platform. A double-drive piezoelectric stack microgripper comprising a bridge amplifying mechanism and a parallelogram mechanism, a piezoelectric stack actuator and a position/ clamping force strain sensor is designed by adopting a straight round flexible hinge. The XY fretting platform with double rocker mechanism and parallelogram mechanism, piezoelectric stack actuator and laser sensor is designed by using hybrid straight circle-blade flexible hinge. Then we use the pseudo-rigid body method to establish the static and dynamic model of the mechanism, and validate the system model through the finite element analysis. Finally, an experimental system was built to test the open-loop characteristics of micro-gripper and micro-platform. The third chapter presents the control strategy of the position/ clamping force of the micro gripper. On the basis of the two-drive piezoelectric stack micro gripper designed in the second chapter, the micro gripper mechanism is decomposed and the original Single Input-Dual Output Control issues become Dual Input-Dual Output the problem is that when the displacement track of the left clamping arm of the micro gripper is precisely tracked by adopting a non-linear fuzzy controller (NFL), a PI controller is used for synchronously adjusting the clamping force of the right clamping arm of the micro gripper, thereby realizing the synchronous control of the position/ clamping force track of the micro gripper. In order to verify the feasibility of the position/ clamping force synchronous control strategy, four typical trace (square wave, sine, amplitude and frequency) tracking control experiments were carried out. In the fourth chapter, a Bouc-Wen model for accurately characterizing asymmetric hysteresis is constructed for the hysteresis non-linear problem of piezoelectric stack actuator. An improved genetic algorithm is used to identify the parameters of the asymmetric Bouc-Wein hysteresis model, and a hysteresis model predictive experiment of sinusoidal attenuation and arbitrary trajectory is carried out, and the validity of the asymmetric Bouc-Wen hysteresis model and the parameter identification method is verified. In chapter five, the problem of cooperative control of multi-degree-of-freedom multiplexer is studied. Based on the Bouc-Wen hysteresis model established in the fourth chapter, the feedforward controller based on the hysteresis inverse model is designed according to the obtained Bouc-Wen model parameters, and the PI controller is superposed on the basis of the feedforward controller to form a composite controller, so that the precise control of the displacement of the output displacement of the micro-motion platform is realized. then the piezoelectric stack micro-gripper is fixedly arranged on the micro-motion platform, and the cooperative control of the multi-degree-of-freedom dynamometer is carried out. That is, in synchronization with the NFL/ PI controller, the position/ clamping force track of the piezoelectric stack micro gripper is controlled in stages, and the output displacement track of the piezoelectric stack micro-motion platform is precisely tracked and controlled by using a composite controller, The experimental results verify the feasibility and effectiveness of cooperative control strategy. The sixth chapter carries out the macro-micro-clamping system dynamics modeling and trajectory planning research. A flexible micro gripper designed in the second chapter is fixed on a single-degree-of-freedom macro-motion platform driven by a servo motor to form a macro-micro-clamping system with large range and high-precision movement. By using the pseudo-rigid body model, the integral dynamic model of the macro-micro-clamping system is set up by the mode method and Lagrange equation, and the vibration (offset) of the end clamping arm of the compliant micro gripper excited by the large-range macro-motion is initially reduced by planning the macro-motion trajectory. In order to validate the effectiveness of the dynamic model and trajectory planning strategy, a macro-micro-clamping experimental system was constructed and different macro-motion trajectory test experiments were carried out. The experimental results verify the correctness and effectiveness of the dynamic model and trajectory planning strategy. Chapter 7 summarizes the full-text work and looks forward to the micro-nano-operation technology driven by piezoelectric stack.
【学位授予单位】:浙江大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TH703

【相似文献】

相关期刊论文 前10条

1 纪华伟;杨世锡;吴昭同;严拱标;;一种无耦合位移和低集中应力的二维微操作器研究[J];仪器仪表学报;2006年11期

2 纪华伟;杨世锡;吴昭同;;一体化微操作器误差分析与建模[J];农业机械学报;2007年03期

3 王鹏飞;郭伟;孙立宁;;球基微操作器黏滑摩擦过程建模与分析[J];中国机械工程;2011年15期

4 荣伟彬,曲东升,孙立宁,祝宇虹,楼超飞;集成式微操作器的研制[J];机器人;2003年03期

5 吴建华,褚家如;一种压电驱动微操作器及其释放位置精度分析[J];光学精密工程;2005年03期

6 郭伟;汪盛;李满天;孙立宁;;基于粘滑驱动的球基微操作器动力学建模与分析[J];机械工程学报;2007年04期

7 王鹏飞;李满天;孙立宁;;基于黏滑驱动的球基微操作器的频响分析[J];高技术通讯;2010年06期

8 荣伟彬;曲东升;祝宇虹;孙立宁;蔡鹤皋;;集成式微操作器控制系统的研制[J];电气自动化;2003年02期

9 刘劲松,吴威,,蔡鹤皋;一种基于力传感器机器人装配作业的研究[J];哈尔滨工业大学学报;1995年02期

10 张阳;周成刚;叶锡标;黄文浩;;碳纤维两臂微镊的研究分析[J];中国科学技术大学学报;2007年07期

相关会议论文 前1条

1 嵇国金;马奎;王磊;;3-DOF并联微操作器运动学分析[A];制造业与未来中国——2002年中国机械工程学会年会论文集[C];2002年

相关博士学位论文 前2条

1 杨依领;压电叠堆驱动的微操作器系统建模及控制技术研究[D];浙江大学;2016年

2 吴建华;高效率的微器件自动装配技术研究[D];中国科学技术大学;2007年

相关硕士学位论文 前4条

1 李德选;面向微细作业的微操作器的关键技术研究[D];东南大学;2006年

2 赵晓伟;大范围运动下宏/微操作器的动力学建模与轨迹规划研究[D];浙江大学;2016年

3 汪盛;基于粘滑原理的摩擦力驱动机理研究与建模[D];哈尔滨工业大学;2006年

4 万信亮;基于电热效应的新型五自由度微操作器的研究[D];哈尔滨工程大学;2008年



本文编号:2303684

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/yiqiyibiao/2303684.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户e8e71***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com