一种六自由度串联机器人的运动学与动力学仿真分析
发布时间:2018-01-09 03:13
本文关键词:一种六自由度串联机器人的运动学与动力学仿真分析 出处:《深圳大学》2017年硕士论文 论文类型:学位论文
更多相关文章: 运动学 动力学 Robotics Toolbox 轨迹规划 联合仿真
【摘要】:工业4.0的浪潮带来了工业机器人的飞速发展,现如今,工业机器人已经被广泛应用于制造业等行业,它们已成为了先进科技力量的标志。传统的人工生产线越来越多地被自动化生产线代替。工业机器人的飞速发展,促进了对其运动学、动力学、轨迹规划和运动仿真分析等方法的多样化。本文以自主开发设计的一款六自由度串联机器人作为研究对象,使用连杆参数法创建机器人坐标系统,根据齐次变换矩阵求解机器人运动学正问题,并采用反变换方法用解欧拉角求运动学逆解,求解结果验证了机器人运动学理论的正确性;研究了机器人的动力学分析方法,以牛顿方程和欧拉方程为出发点,分析了机器人构件的速度和加速度以及牛顿-欧拉动力学递推计算公式;应用拉格朗日方程描述了机器人系统的动力学方程,对动力学的算法进行优化并验证了算法优化的可行性,在Matlab进行动力学仿真,通过对机器人正、逆动力学仿真,仿真结果得出关节力、力矩与关节速度、加速度等变量的相互关系,以及机器人在有无重力的情况下的力矩变化,对机器人的运动控制提供巨大帮助;应用Matlab强大的建模仿真和GUI编程功能,在Robotics Toolbox工具箱中建立机器人数学模型,根据机器人运动学基础的知识,实现了机器人正运动学和逆运动学的求解仿真,并根据机器人各个关节的角位移、速度和加速度等参数变化曲线,验证了机器人运动学的正确性和机器人建模的可行性;此外还研究了基于关节空间规划和笛卡尔空间规划对机器人运动轨迹规划等问题,实现了对机器人运动路径的实时规划。最后,在Solidworks创建六自由度串联机器人三维模型,通过插件建立与Matlab连接,在SimMechanics中生成仿真模型。根据机器人运动学,对机器人规划一条直线的运动轨迹,并把各个关节的角位移信号输入到SimMechanics仿真模型中,得到可视化仿真模型界面,验证仿真所得到的机器人运动轨迹与期望轨迹一致,达到了预期的要求。通过在SimMechanics建立物理仿真模型,使计算、仿真、分析这些过程一次性完成,这种新的仿真方法提高了运动仿真效率与准确性。
[Abstract]:The wave of industry 4.0 has brought the rapid development of industrial robots. Nowadays, industrial robots have been widely used in manufacturing and other industries. They have become the symbol of advanced scientific and technological power. Traditional artificial production lines are more and more replaced by automated production lines. The rapid development of industrial robots has promoted the kinematics and dynamics of industrial robots. This paper takes a six-degree-of-freedom serial robot as the research object and creates the robot coordinate system by using the linkage parameter method. According to the homogeneous transformation matrix, the forward kinematics problem of the robot is solved, and the inverse solution of kinematics is obtained by using the inverse transformation method. The results verify the correctness of the kinematics theory of the robot. The dynamic analysis method of robot is studied. The velocity and acceleration of robot component and the formula of Newton-Euler dynamics recursive calculation are analyzed based on Newton equation and Euler equation. The dynamic equation of robot system is described by Lagrangian equation. The dynamic algorithm is optimized and the feasibility of optimization is verified. The dynamic simulation is carried out in Matlab, and the robot is positive. Inverse dynamics simulation, the simulation results show the relationship between joint force, torque and joint velocity, acceleration and other variables, as well as the dynamics of the robot in the case of gravity or not. Provide great help to robot motion control; By using the powerful modeling and simulation function of Matlab and GUI programming function, the mathematical model of robot is established in the Robotics Toolbox toolbox, which is based on the basic knowledge of robot kinematics. The forward kinematics and inverse kinematics of the robot are simulated, and the curves of angular displacement, velocity and acceleration of each joint are obtained. The correctness of robot kinematics and the feasibility of robot modeling are verified. In addition, the robot trajectory planning based on joint space planning and Cartesian space planning is studied, and the real-time motion path planning is realized. Finally. Three-dimensional model of six-degree-of-freedom series robot is created in Solidworks, and the connection with Matlab is established by plug-in. The simulation model is generated in SimMechanics. According to the kinematics of the robot, the trajectory of a straight line is planned for the robot. The angular displacement signals of each joint are input into the SimMechanics simulation model and the visual simulation model interface is obtained to verify that the robot motion trajectory obtained by the simulation is consistent with the desired trajectory. Through the establishment of physical simulation model in SimMechanics, so that the calculation, simulation, analysis of these processes completed in one time. This new simulation method improves the efficiency and accuracy of motion simulation.
【学位授予单位】:深圳大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP242
【参考文献】
相关期刊论文 前10条
1 刘蕾;;一种串联机器人运动学快速求解方法[J];自动化仪表;2015年08期
2 骆敏舟;方健;赵江海;;工业机器人的技术发展及其应用[J];机械制造与自动化;2015年01期
3 冯玉倩;高锦宏;王殿君;杜龙波;;基于ADAMS的七自由度机器人动力学分析及仿真[J];北京石油化工学院学报;2013年02期
4 林江;;水下电动机械手动力学分析及仿真[J];四川兵工学报;2010年06期
5 王伟东;钱东海;;基于Open Inventor的机器人运动学仿真和轨迹规划研究[J];机械与电子;2010年05期
6 熊小琴;何广平;;仿袋鼠单腿跳跃机器人动力学建模与仿真[J];北方工业大学学报;2009年01期
7 毕胜;;国内外工业机器人的发展现状[J];机械工程师;2008年07期
8 孙汉旭;贾庆轩;张秋豪;吴凡;谭月胜;叶平;;基于三分支机器人关节空间轨迹规划的研究[J];北京邮电大学学报;2006年03期
9 杨萍,仲大伟,李鹤岐,张淑珍;水轮机修复专用机器人的动力学仿真和分析[J];机械与电子;2004年02期
10 马光,申桂英;工业机器人的现状及发展趋势[J];组合机床与自动化加工技术;2002年03期
,本文编号:1399767
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/1399767.html