不同倾角条件下大壁虎前庭腹外侧核神经元的响应特性研究
本文关键词: 大壁虎 前庭 前庭腹外侧核 多通道同步记录 转角同步测量系统 神经元 聚类分析 特征分析 出处:《南京航空航天大学》2016年硕士论文 论文类型:学位论文
【摘要】:大壁虎运动灵活,环境适应性强,具有卓越的三维空间的无障碍运动能力,成为理想的生物机器人和仿壁虎器人研究模型。探索不同倾角位置下大壁虎前庭核团的空间响应规律,将推进对大壁虎运动姿态神经调控机理的认识,为仿壁虎机器人姿态控制策略提供仿生启示。为定量分析大壁虎在不同空间下的前庭核区域神经元的放电响应特征,本文首先对大壁虎平衡感知实验平台进行了改进:增加转角同步测量系统,设计了角度传感器支架和联轴器;通过Matlab和Plexon集成程序设计,实现了转角信号与神经元信号的同步记录与显示。其次,本文利用四通道微丝阵列电极对大壁虎在不同倾角条件下前庭腹外侧核(Nucleus Vestibularis Ventrolateralis,Vevl)区域的神经元放电响应信号进行了在体记录。利用聚类分析和特征分析对所采集神经元放电响应信号进行详细分析,结果发现四类方向敏感性神经元:Roll同侧兴奋,Roll对侧兴奋,Pitch nose-up兴奋以及Pitch nose-down兴奋。Roll同侧旋转兴奋神经元剧烈放电响应的区域集中在同侧0°-120°,Roll对侧旋转兴奋神经元剧烈放电响应区域集中在0°-210°。Nose-up旋转兴奋神经元剧烈放电响应区域集中在nose-up 120°-180°、210°、240°。Nose-down旋转兴奋神经元,除nose-down 240°外,其余nose-down角度神经元放电响应均较为剧烈。大壁虎前庭神经元复杂的响应模式可能源于不同前庭输入神经元的共同作用。不同的Roll、Pitch倾斜角度下,大壁虎Vevl神经元很可能通过短暂的相关性活动与其他神经元进行相互协调或者相互之间的兴奋性和抑制性输入达到动态平衡来实现姿态的平衡控制。此外,本文还探索了平衡感知实验平台转动的电动控制。采用伺服电机和同步齿形带系统驱动转台旋转,运用Arduino mega2560编写了驱动转台旋转的程序,初步实现了转台旋转的自动控制。
[Abstract]:Large gecko is flexible in sports, strong in environmental adaptability, and has excellent three-dimensional space barrier-free ability. It is an ideal research model for biologic robot and gecko simulation. Exploring the spatial response law of vestibular nucleus of Gecko in different inclination position will advance the understanding of the neural regulation mechanism of Gecko's motion posture. To provide bionic inspiration for attitude control strategy of Gecko robot and to quantitatively analyze the firing response characteristics of neurons in vestibular nucleus region of Gecko gecko in different space. In this paper, the experimental platform of gecko balance sensing is improved: the angle sensor bracket and coupling are designed by adding the synchronous measuring system of rotation angle; The integrated program of Matlab and Plexon is used to realize the synchronous recording and display of corner signal and neuron signal. Secondly. A four-channel microfilament array electrode was used to pair Nucleus Vestibularis Ventrolateralis in the ventrolateral vestibular nucleus of Gecko gecko at different dip angles. The response signals of neuron discharge in Vevl region were recorded in vivo. Cluster analysis and characteristic analysis were used to analyze the response signals of neuron discharge in detail. The results showed that four kinds of direction-sensitive neurons: roll ipsilateral excitatory neurons were found to be contralateral excitatory neurons. The regions of intense firing response of Pitch nose-up excited neurons and Pitch nose-down excitatory neurons were concentrated in the ipsilateral 0 掳-120 掳. The response region of Roll contralateral rotational excited neurons to intense discharge is concentrated in 0 掳-210 掳.Nose-up rotative excited neurons. The response area is concentrated in nose-up. 120 掳-180 掳. The excited neurons were rotated at 210 掳, 240 掳. Nose-down, except for nose-down 240 掳. The other nose-down angle neurons discharge response is more intense. The complex response pattern of large gecko vestibular neurons may be due to the common action of different vestibular input neurons. Different Roll. Pitch slanting angle. It is very likely that the Vevl neurons of the gecko coordinate with other neurons or achieve a dynamic balance between excitability and inhibition input. In addition, the control of posture balance is realized. . This paper also explores the electric control of the rotation of the balance sensing experimental platform. The servo motor and the synchronous toothed belt system are used to drive the rotary table. The program of driving turntable rotation is written by Arduino mega2560, and the automatic control of turntable rotation is preliminarily realized.
【学位授予单位】:南京航空航天大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP242
【参考文献】
相关期刊论文 前8条
1 ;Biomechanism of adhesion in gecko setae[J];Science China(Life Sciences);2012年02期
2 芮岳峰;王亚军;刘景全;杨春生;;基于Parylene的柔性生物微电极阵列的制作[J];纳米技术与精密工程;2011年05期
3 ;Morphology and reaction force of toes of geckos freely moving on ceilings and walls[J];Science China(Technological Sciences);2010年06期
4 王周义;王金童;吉爱红;戴振东;;大壁虎在天花板表面的运动行为与动力学研究[J];科学通报;2010年09期
5 周洪波;李刚;金庆辉;赵建龙;;神经工程系统中的微电极技术[J];微纳电子技术;2006年11期
6 ;The Modulation and Control of the Gecko's Foot Movement[J];Journal of Bionics Engineering;2005年03期
7 王元占,杨培梁,刘秋菊,刘谋荣,刘华盛,吴湘慧,曾俊岭;常用实验动物的麻醉[J];中国比较医学杂志;2004年04期
8 陈俊强;同时记录生物电和微电泳的微电极放大器[J];生理学报;1984年01期
相关博士学位论文 前1条
1 王文波;大壁虎运动人工诱导的基础研究[D];南京航空航天大学;2008年
相关硕士学位论文 前3条
1 刘斌;不同角度平面大壁虎前庭核神经元电信号记录及其特征分析[D];南京航空航天大学;2012年
2 刘振东;微电极推进器的研制及其在动物运动调控中的运用[D];南京航空航天大学;2012年
3 蔡雷;刺激大壁虎基底神经核对运动行为的影响[D];山东师范大学;2008年
,本文编号:1460927
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/1460927.html