当前位置:主页 > 科技论文 > 自动化论文 >

部分观测马尔科夫决策过程中基于记忆的强化学习问题研究

发布时间:2018-02-11 07:48

  本文关键词: 强化学习 U-Tree算法 Sarsa(λ)算法 Q-学习算法 部分观测马尔科夫决策过程 出处:《天津工业大学》2017年硕士论文 论文类型:学位论文


【摘要】:在强化学习中,Agent对环境做出动作并从环境得到回报,相应于不同的动作,环境给予的回报值有所不同,通过对到达目标点所作一系列动作的回报值不断强化,Agent能够学到从内部状态到动作的映射,即学到决策过程。传统的U-Tree算法在解决部分观测马尔科夫决策过程(partially observable Markov decision processes,POMDP)的强化学习问题方面已经取得了显著的成效,但因为边缘结点生长的随意性,仍然存在树的规模庞大,内存需求较大,计算复杂度过高的问题。本文在原有U-Tree算法的基础上进行改进,通过获取下一步的观测值,对同一叶结点中做相同动作的实例进行划分,提出了一种基于有效实例扩展边缘结点的(EffectiveInstance U-Tree)算法,简称为EIU-Tree算法。大大缩减了计算规模,从而可以帮助agent更快更好地学习,并在经典的4×3栅格问题中进行了仿真实验,实验表明该算法相对于原有的U-Tree算法有更好的效果。针对U-Tree算法和MU-Tree算法中收敛速度慢的问题,本文中在agent做值迭代的时候,我们用Sarsa(λ)算法更新Q值,提出了一种基于Sarsa(λ)算法的(Sarsa(λ)U-Tree)算法,简称为SU-Tree算法。当agent到达目标状态或惩罚状态时,会对这条路径上所有产生的实例进行Q值的更新,提高了算法的收敛速度。并在4X3方格问题和奶酪迷宫问题中进行了仿真实验,实验表明该算法相对于原有的U-Tree算法和MU-Tree算法,Agent可以更快地找到起点到终点的无震荡路径。
[Abstract]:In reinforcement learning, agents act on the environment and get the return from the environment. According to the different actions, the return value of the environment is different. By continuously reinforcing the return value of a series of actions to the target point, the Agent can learn the mapping from the internal state to the action. The traditional U-Tree algorithm has achieved remarkable results in solving the reinforcement learning problem of partially observing Markov observable Markov decision processes (POMDP), but because of the random growth of edge nodes, There are still the problems of large scale of tree, large memory requirement and high computational complexity. This paper improves on the original U-Tree algorithm and obtains the observation value of the next step. In this paper, a new algorithm called EIU-Tree algorithm based on effective instance to extend edge nodes is proposed, which can greatly reduce the calculation scale and help agent learn more quickly and better, by dividing the cases that do the same action in the same leaf node, and the algorithm is called EIU-Tree algorithm, which is based on extending the edge node of the effective instance, and the algorithm is called EIU-Tree algorithm for short, which greatly reduces the calculation scale and can help agent learn better and faster. The simulation results in the classical 4 脳 3 grid problem show that the algorithm is more effective than the original U-Tree algorithm. For the problem of slow convergence in U-Tree algorithm and MU-Tree algorithm, this paper makes a value iteration in agent. In this paper, we use Sarsa (位) algorithm to update Q value, and propose a Sarsa (位) algorithm based on Sarsa (位) algorithm, which is called SU-Tree algorithm for short. When agent reaches the target state or punishment state, it will update the Q value of all instances generated on this path. Simulation experiments on 4X3 lattice problem and cheese maze problem show that compared with the original U-Tree algorithm and MU-Tree algorithm, the algorithm can find the non-oscillatory path from the starting point to the end point more quickly than the original U-Tree algorithm and the MU-Tree algorithm.
【学位授予单位】:天津工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O225;TP18

【参考文献】

相关期刊论文 前6条

1 彭志平;柯文德;;一种连续U-树抽象状态最佳分裂点选取方法[J];上海交通大学学报;2008年02期

2 殷苌茗,王汉兴,陈焕文,谢丽娟;求解POMDP的动态合并激励学习算法[J];计算机工程;2005年22期

3 王学宁,贺汉根,徐昕;求解部分可观测马氏决策过程的强化学习算法[J];控制与决策;2004年11期

4 谢丽娟,陈焕文;部分可观测Markov环境下的激励学习综述[J];长沙电力学院学报(自然科学版);2002年02期

5 张波,蔡庆生,郭百宁;口语对话系统的POMDP模型及求解[J];计算机研究与发展;2002年02期

6 陈焕文,谢丽娟;平均奖赏MDP的在策略无模型激励学习算法[J];计算机工程与科学;2001年02期



本文编号:1502543

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/1502543.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户9d8f8***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com