复合驱动链式管内机器人动力学研究
本文选题:管内机器人 切入点:复合驱动 出处:《哈尔滨工业大学》2017年硕士论文 论文类型:学位论文
【摘要】:在现代实际工程应用中,管道作为一种高效的运输工具在工业生产中得到广泛应用;管道机器人作为特种机器人,被用来代替人类完成各种各样的管内作业,也越来越被人们所重视。随着时间推移,管道环境越来越复杂、管道长度越来越长、管内作业越来越难等一系列问题的出现使得人们对管内机器人的要求越来越高。目前,续航能力强、功能多样化以及运动稳定性好等优点逐渐成为评价管内机器人的标准。基于此,提出复合驱动链式管内机器人概念,其复合驱动满足了续航能力强、多单元结构满足了机器人的功能多样化,为后续的样机研制奠定理论基础。本文以复合驱动链式管内机器人概念为基础,首先建立了通用物理模型,以该模型为研究对象进行了静力学分析,包括不同姿态角下电机驱动力大小、作用在皮碗上的流体驱动力模型及管内阻力计算模型;推导出机器人在水平和竖直方向运动的静力学平衡条件。然后描述了链式机器人通过各种管道障碍的运动过程,包括焊缝障碍物和弯管障碍;分别对单节单元体和多节单元体的弯管通过过程进行了数学描述,推导出通过弯管的几何约束条件;讨论了不同情况下各滚轮的差速特性对机器人转向过程的影响,并将差速特性应用到T型管的通过过程中。基于虚拟样机技术,对弯管通过过程和障碍物通过过程进行了仿真。将单节单元体和多节单元体的过弯仿真过程进行了速度及滚轮角速度的对比,通过对比验证了单节单元体与多节单元体弯管通过过程保持一致;此外通过仿真过程获得双虎克铰在过弯过程中最大转角值;通过仿真研究了影响机器人里程轮系统通过焊缝运动过程的主要因素,结果表明:当初始速度改变时,里程轮跳起高度及前后速度变化差值也会发生改变。建立了基于CFD算法的流场计算模型,在改变皮碗与管壁环形间隙大小的条件下对管内机器人周围流场速度矢量和压强变化进行了描述;在Fluent软件中模拟了PIG型管内机器人随流体流动的运动过程,得到了流体作用下速度及加速度的变化趋势;最后在电机驱动力与流体驱动力耦合作用下,通过描述机器人在四种不同的工况下的运动过程,验证了复合驱动的必要性与合理性。
[Abstract]:Pipeline is widely used in industrial production as an efficient transportation tool in modern engineering applications. As a special robot, pipeline robot is used to replace human to complete a variety of pipeline operations. As time goes by, the pipeline environment is becoming more and more complex, the pipe length is getting longer and longer, and the work in the pipe is becoming more and more difficult. The advantages of strong endurance, diverse functions and good motion stability are gradually becoming the criteria for evaluating the robot in pipe. Based on this, the concept of chain robot with compound drive is put forward, and its compound drive satisfies the strong ability of endurance. The multi-unit structure satisfies the diverse functions of the robot, and lays a theoretical foundation for the subsequent prototype development. In this paper, a general physical model is established on the basis of the concept of a composite driven chain robot in a tube. The static analysis of the model is carried out, including the driving force of the motor at different attitude angles, the fluid driving force model acting on the leather bowl and the calculation model of the resistance in the tube. The static equilibrium conditions of robot movement in horizontal and vertical directions are derived. Then the motion process of chain robot passing through various pipe obstacles including weld obstacle and bend obstacle is described. The passage process of single unit body and multi-section element body is described in mathematics, the geometric constraint condition of passing tube is deduced, and the influence of the differential speed characteristic of each roller on the steering process of robot is discussed. The differential characteristic is applied to the passage of T-tube. Based on the virtual prototyping technology, This paper simulates the passing process of curved pipe and obstacle, and compares the velocity and angular velocity of rolling wheel between single unit body and multi-section element body. It is verified by comparison that the single unit body is consistent with the multi-section element body in the process of bending, and the maximum rotation angle of the double tiger hinge in the process of overbending is obtained by the simulation process. The main factors influencing the movement of the robot mileage wheel system through the weld seam are studied by simulation. The results show that: when the initial velocity changes, The variation of the height and velocity of the mileage wheel will also change. The flow field calculation model based on CFD algorithm is established. The velocity vector and pressure change of the flow field around the robot in the tube are described under the condition of changing the ring gap between the cup and the pipe wall, and the motion process of the robot in the PIG tube with fluid flow is simulated in Fluent software. The variation trend of velocity and acceleration under the action of fluid is obtained. Finally, under the coupling of motor driving force and fluid driving force, the motion process of robot under four different working conditions is described. The necessity and rationality of compound drive are verified.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP242
【参考文献】
相关期刊论文 前10条
1 张仕民;梅旭涛;王国超;李亨涛;王宏生;;油气管道维抢修方法及技术进展[J];油气储运;2014年11期
2 祁永斐;赵涛;杜利霞;何照青;;基于动网格与UDF方法的稳流器流场数值模拟研究[J];节水灌溉;2013年05期
3 张功晖;黎志航;周志鸿;;基于Fluent流场数值仿真的管路流量计算[J];液压气动与密封;2010年12期
4 葛如海;王桃英;许栋;臧绫;;基于动网格和UDF技术的气缸动态特性研究[J];机床与液压;2010年21期
5 嵇萍;刘泗岩;;微型机器人驱动技术发展综述[J];微电机;2009年08期
6 张玉峰;姜生元;李建永;张学文;;介质流压差驱动式管道机器人的驱动、调速原理分析及结构设计[J];吉林化工学院学报;2009年02期
7 王殿君;李润平;黄光明;;管道机器人的研究进展[J];机床与液压;2008年04期
8 钟映春;杨宜民;;新型能源自给式管道机器人的原理设计与研究[J];机床与液压;2006年07期
9 薛龙;孙章军;孙晨;;微型管内机器人的研究现状[J];北京石油化工学院学报;2006年02期
10 杨宜民;黄明伟;;能源自给式管道机器人的机械结构设计[J];机器人;2006年03期
相关博士学位论文 前1条
1 张云伟;煤气管道检测机器人系统及其运动控制技术研究[D];上海交通大学;2007年
相关硕士学位论文 前2条
1 李志勇;流体驱动自适应管道爬行器的设计与分析[D];北京化工大学;2012年
2 黄明伟;新型无缆管道机器人的初探[D];广东工业大学;2006年
,本文编号:1588502
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/1588502.html