当前位置:主页 > 科技论文 > 自动化论文 >

矿用输送带纵向撕裂检测系统研究

发布时间:2018-03-18 11:15

  本文选题:矿用输送带 切入点:纵向撕裂 出处:《工矿自动化》2017年02期  论文类型:期刊论文


【摘要】:针对目前矿用输送带纵向撕裂检测方法灵敏度低及检测设备复杂、体积较大等问题,采用机器视觉法设计了一种矿用输送带纵向撕裂检测系统。该系统采用FAST角点检测算法及基于Hough变换的直线检测算法检测输送带纵向撕裂现象,并采用基于该检测方法的纵向撕裂检测无线传感器节点及速度传感器实现输送带纵向撕裂部位位置及长度检测。测试结果表明,对于长6m、宽800mm、运行速度为5m/s的输送带,该系统每秒可处理46.3帧图像,检测准确率为96.24%。
[Abstract]:Aiming at the problems of low sensitivity, complex detection equipment and large volume of the present mine conveyor belt longitudinal tear detection method, A mine belt longitudinal tear detection system is designed by using machine vision method. The system uses FAST corner detection algorithm and linear detection algorithm based on Hough transform to detect longitudinal tear phenomenon of conveyor belt. The wireless sensor node and speed sensor based on this method are used to detect the position and length of the longitudinal tear position of the conveyor belt. The test results show that for the conveyor belt with a length of 6 m, a width of 800 mm and a speed of 5 m / s, the longitudinal tear is detected by the wireless sensor node and the speed sensor. The system can process 46.3 frames of images per second, and the detection accuracy is 96.24.
【作者单位】: 太原理工大学山西省测控技术与新型传感器工程技术研究中心;
【基金】:山西省自然科学基金资助项目(201601D011059)
【分类号】:TD634

【相似文献】

相关期刊论文 前10条

1 刘曙光,屈萍鸽,费佩燕;机器视觉在纺织检测中的应用[J];纺织学报;2003年06期

2 赵茂程;侯文军;;我国基于机器视觉的水果自动分级技术及研究进展[J];包装与食品机械;2007年05期

3 张五一;赵强松;王东云;;机器视觉的现状及发展趋势[J];中原工学院学报;2008年01期

4 牛一帆;;机器视觉在印刷质量检测中的应用[J];印刷质量与标准化;2009年09期

5 牛一帆;;机器视觉在印刷质量检测中的应用[J];广东印刷;2009年05期

6 杨继志;郭敬;;机器视觉在烟草行业的应用[J];机电产品开发与创新;2011年06期

7 王蕾;刘建立;高卫东;;基于机器视觉的织物洗涤后尺寸稳定性评价[J];纺织学报;2012年07期

8 张晶;刘东明;;基于机器视觉的工件检测系统研究[J];硅谷;2012年09期

9 张树君;辛莹莹;陈大千;;基于机器视觉的饮料瓶标签检测设备[J];食品研究与开发;2014年03期

10 黄星奕;钱媚;徐富斌;;基于机器视觉和近红外光谱技术的杏干品质无损检测[J];农业工程学报;2012年07期

相关会议论文 前10条

1 赵磊;董吉文;李金屏;;拓扑理论在机器视觉中的研究进展[A];全国第十五届计算机科学与技术应用学术会议论文集[C];2003年

2 张彦东;;基于机器视觉的连接器装配机床改造研究[A];首届珠中江科协论坛论文集[C];2011年

3 蔡小秧;陈文楷;;机器视觉中的鲁棒估计技术[A];计算机技术与应用进展·2007——全国第18届计算机技术与应用(CACIS)学术会议论文集[C];2007年

4 刘雅举;李娜;张莉;李东明;;机器视觉在药用玻璃瓶质量检测中的研究[A];2007年河北省电子学会、河北省计算机学会、河北省自动化学会、河北省人工智能学会、河北省计算机辅助设计研究会、河北省软件行业协会联合学术年会论文集[C];2007年

5 吴庆华;代娜;黄俊敏;程志辉;何涛;;基于机器视觉的轴承二维尺寸检测[A];第六届全国信息获取与处理学术会议论文集(1)[C];2008年

6 马连峰;张秋菊;;基于机器视觉的彩色套印检测技术研究[A];第十一届全国包装工程学术会议论文集(二)[C];2007年

7 金守峰;张慧;;面向机器视觉的织物纬斜检测方法[A];全国先进制造技术高层论坛暨第九届制造业自动化与信息化技术研讨会论文集[C];2010年

8 管庶安;周龙;陈永强;廖明潮;;机器视觉在粮食品质检测中的应用研究[A];中国粮油学会第三届学术年会论文选集(下册)[C];2004年

9 张伟华;陈军;连世江;贾海政;;机器视觉及其在农业机械中的应用综述[A];2007年中国农业工程学会学术年会论文摘要集[C];2007年

10 沈宝国;陈树人;尹建军;;基于机器视觉的棉田杂草精确定位研究[A];纪念中国农业工程学会成立30周年暨中国农业工程学会2009年学术年会(CSAE 2009)论文集[C];2009年

相关重要报纸文章 前10条

1 本报记者 李剑琦;机器视觉行业整合正热 中国市场尚处萌芽期[N];机电商报;2005年

2 本报记者 董碧娟;解密机器视觉“第三只眼”[N];经济日报;2013年

3 本报记者 郭涛;机器视觉:为机器装上“眼睛”和“大脑”[N];中国高新技术产业导报;2014年

4 张均;德国机器视觉传感器市场前景好[N];中国贸易报;2007年

5 金刚;给机器一双慧眼[N];计算机世界;2007年

6 朱广菁;机器视觉怎样“看”不合格产品[N];大众科技报;2008年

7 宋昆;用机器视觉控制烟草质量[N];计算机世界;2007年

8 张栋;西安光电子专业孵化器举办专业展览会[N];中国高新技术产业导报;2007年

9 王遐;机器视觉:药品包装在线检测系统开发成功[N];中国包装报;2010年

10 点评人 高炎 黄牧青 刘笑一 李士杰 北京大学技术转移中心;机器视觉辅助冬季道路状况监测[N];科技日报;2014年

相关博士学位论文 前10条

1 梁卓锐;机器视觉手势交互的交互映射研究[D];华南理工大学;2015年

2 孟庆宽;基于机器视觉的农业车辆—农具组合导航系统路径识别及控制方法研究[D];中国农业大学;2014年

3 田明锐;基于机器视觉的散料装车控制系统研究[D];长安大学;2016年

4 葛动元;面向精密制造与检测的机器视觉及智能算法研究[D];华南理工大学;2013年

5 饶洪辉;基于机器视觉的作物对行喷药控制系统研究[D];南京农业大学;2006年

6 龚爱平;基于嵌入式机器视觉的信息采集与处理技术研究[D];浙江大学;2013年

7 陈丽君;基于机器视觉的变量喷雾控制系统研究[D];沈阳农业大学;2009年

8 徐晓秋;机器视觉球面孔位快速精密测量系统的研究[D];四川大学;2006年

9 成芳;稻种质量的机器视觉无损检测研究[D];浙江大学;2004年

10 程洪;面向园艺应用的机器视觉目标辨识方法创新[D];中国农业大学;2015年

相关硕士学位论文 前10条

1 冼志军;锡膏印刷机误差与锡膏印刷质量检测技术研究[D];华南理工大学;2015年

2 孙斌;基于FPGA的压力表盘机器视觉研究与实现[D];昆明理工大学;2015年

3 许哲;基于机器视觉的快速测温热电偶焊接技术研究[D];河北联合大学;2014年

4 李鹏;基于机器视觉的PCB工业在线检测系统研究[D];昆明理工大学;2015年

5 佘燕玲;以用户为中心的机器视觉手势交互空间映射关系研究[D];华南理工大学;2015年

6 孙中国;基于机器视觉的面粉袋码垛机器人研究[D];山东建筑大学;2015年

7 漆静;基于机器视觉集装箱吊具智能定位系统研究[D];西南交通大学;2015年

8 张文;基于机器视觉的通信装备故障识别研究[D];西南交通大学;2015年

9 冉宝山;基于机器视觉的装料系统试验研究[D];长安大学;2015年

10 冯康;基于机器视觉的棉花识别与定位技术的研究[D];石河子大学;2015年



本文编号:1629358

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/1629358.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户7bc38***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com