当前位置:主页 > 科技论文 > 自动化论文 >

复杂场景下的水上桥梁识别技术研究

发布时间:2018-04-21 01:23

  本文选题:自动识别 + 遥感图像 ; 参考:《南京航空航天大学》2017年硕士论文


【摘要】:伴随着计算机视觉技术的发展,遥感图像中的目标自动识别已经成为研究的热点和重点。桥梁作为典型且重要的人工建筑,是交通运输线路的咽喉。对采集图像中的桥梁进行有效识别,在民用及军事上都有着广泛需求。本文以复杂场景下的可见光遥感图像中桥梁目标的自动识别作为研究背景,针对河流的自动提取和河流上桥梁的定位等问题进行了研究。根据复杂场景下水上桥梁图像的特点:不同图像中河流差异较大,水面可能平静,分布均匀,也可能由于波浪和水体浑浊造成河流纹理丰富,分布不均匀。复杂场景下图像的背景区域也多样性,可能包含多种自然景物、农作物或人工建筑,如林地、耕地和居民地等,使得背景中包含多种形式的纹理。在此基础上本文建构了一套完整的水上桥梁自动识别系统。主要研究内容如下:(1)复杂场景下的桥梁图像,河流虽然呈现出不同的形式,其灰度值或高或低,分布或均匀或杂乱。但河流区域之间的颜色相似度较高,河流区域的颜色相比背景区域的颜色差异较大。根据颜色特征相似度,本文提出了K均值聚类与Harris角点相结合的无监督分割法实现河流的自动提取。(2)针对更复杂的桥梁图像,即河流区域内,部分颜色差异较大,河流颜色无明显规律的情况,K均值聚类与Harris角点相结合的方法不能提取出较为完整的河流,但可以提取出河流区域中的部分样本。利用这部分样本提取出能代表本张图像中的河流区域的颜色和纹理特征,进行学习,采用自监督分割方法,对图像中的所有像素点分类,分割出完整的河流区域。(3)对分割出的河流进行形态学操作和干扰区域的剔除,得到较为完整的河流轮廓。对河流二值图像膨胀腐蚀,填补截断位置得到连通的河流二值图,与原来的河流二值图像作差,提取出疑似桥梁的截断区域。利用河流骨架与桥梁相交的特征剔除部分虚假桥梁,再根据桥梁拐点的特征,验证真实桥梁的存在性,完成真实桥梁的获取,将验证后的桥梁对应在原图像的位置进行标记,从而实现桥梁定位。(4)本文提出的桥梁自动识别方法以Visual Studio 2010为开发平台,并结合OpenCV开源视觉库实现了该系统的开发。实验表明,该系统能够自动识别出高空水上桥梁图像中的桥梁目标,并具有一定的适用性。
[Abstract]:With the development of computer vision technology, automatic target recognition in remote sensing images has become a hot spot and focus. As a typical and important artificial building, bridge is the throat of transportation line. It is widely needed in civil and military fields to identify bridges in image collection. In this paper, the automatic recognition of bridge targets in visible light remote sensing images of complex scenes is used as the research background, and the automatic extraction of rivers and the location of bridges on rivers are studied in this paper. According to the characteristics of bridge image in the water of complex scene: the river is different in different images, the water surface may be calm and distributed evenly, or the river texture may be rich and uneven due to the wave and water turbidity. The background areas of the images in complex scenes are also diverse and may include many natural scenes crops or artificial buildings such as forest farmland and inhabitant land which make the background contain many kinds of textures. On the basis of this, this paper constructs a set of complete automatic recognition system of water bridge. The main contents of this study are as follows: (1) Bridge images in complex scenes. Although rivers show different forms, their gray values are high or low, and their distribution is uniform or chaotic. However, the color similarity of river region is higher, and the color of river region is more different than that of background region. According to the similarity of color features, an unsupervised segmentation method based on K-means clustering and Harris corner is proposed to automatically extract river. If there is no obvious rule of river color, the method of K-means clustering combined with Harris corner can not extract more complete river, but can extract some samples from river region. Using this part of the sample to extract the color and texture features which can represent the river region in this image, to learn, to use the self-supervised segmentation method, to classify all the pixels in the image. The whole river area is segmented. (3) the whole river contour is obtained by morphological operation and elimination of the interference area of the segmented river. When the river binary image is dilated and corroded, the connected river binary image is obtained by filling the truncation position, which is different from the original river binary image, and the truncated area of the suspected bridge is extracted. By using the feature of river skeleton intersecting with bridge, some false bridges are eliminated, then the existence of real bridge is verified according to the characteristics of bridge inflection point, and the acquisition of real bridge is completed, and the verified bridge is marked corresponding to the position of the original image. The bridge automatic recognition method proposed in this paper is developed on the platform of Visual Studio 2010 and the open source vision library of OpenCV is used to realize the development of the system. The experimental results show that the system can automatically identify the bridge targets in the image of high altitude water bridge, and it is applicable to some extent.
【学位授予单位】:南京航空航天大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP751

【参考文献】

相关期刊论文 前10条

1 陈爱军;;大幅面卫星遥感图像中桥梁识别算法[J];计算机仿真;2014年06期

2 马瑜;梁慧琳;张艳宁;李韵;徐爽;;基于图像颜色纹理的均值漂移分割算法[J];计算机工程与设计;2013年05期

3 高凤娇;;基于环境要素的枯水期水上桥梁目标的定位方法[J];电子技术应用;2013年02期

4 章锦文;宋小春;赵广州;陈仁;;桥梁目标识别方法综述[J];红外与激光工程;2012年12期

5 于素芬;;一种用于桥梁识别的水域分割提取方法[J];电光与控制;2011年08期

6 吴定海;张培林;任国全;陈非;;基于支持向量的单类分类方法综述[J];计算机工程;2011年05期

7 彭碧发;谭毅华;陶超;田金文;;从高分辨率遥感图像中自动识别水上桥梁[J];应用科学学报;2010年04期

8 蔡飞;涂丹;;可见光图像人造目标检测技术综述[J];计算机应用研究;2010年07期

9 雷宝权;杨丽华;程咏梅;赵春晖;吴燕茹;;基于SVM与颜色/纹理组合特征的景物识别算法[J];计算机科学;2009年10期

10 秦剑;李林;李绍明;王龙鹤;时振通;;基于梯度的图像分割新方法[J];计算机应用;2009年08期

相关博士学位论文 前2条

1 柳稼航;基于视觉特征的高分辨率光学遥感影像目标识别与提取技术研究[D];上海交通大学;2011年

2 陈爱军;典型人造目标自动识别算法研究[D];哈尔滨工业大学;2008年

相关硕士学位论文 前3条

1 曾蕾;基于航天可见光遥感图像的舰船目标检测和速度估算方法[D];西安电子科技大学;2014年

2 薄丽萍;桥梁目标识别的研究与实现[D];中北大学;2010年

3 方晓芙;遥感图像中战略目标识别方法研究[D];西北工业大学;2004年



本文编号:1780317

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/1780317.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户c2905***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com