基于LPFG微生物燃料电池的溶解氧浓度测量
发布时间:2018-04-24 01:32
本文选题:微生物燃料电池 + 溶解氧 ; 参考:《重庆理工大学》2017年硕士论文
【摘要】:微生物燃料电池是一种新型清洁的能源装置,它在产电的同时还能对废水进行处理,近年来成为相关领域研究的热点。虽然微生物燃料电池具有诸多优点,但微生物燃料电池的产电功率低,影响微生物燃料电池产电性能最主要的非生物因素有温度、p H值、溶解氧浓度以及底物浓度等。因此,准确、在线地监测影响微生物燃料电池产电性能的非生物参数,对于优化控制微生物燃料电池产电性能尤为重要。目前关于溶解氧浓度检测的方法法存在费时、费力、耗氧、实时测定困难和受温度影响等缺点,无法有效地运用于微生物燃料电池内溶解氧浓度的测量。因此,探索一种新型的用于微生物燃料电池内溶解氧浓度准确在线测量的方法就显得尤为重要。本文采用长周期光纤光栅(LPFG)和布拉格光纤光栅(FBG)相耦合的方式来实现对微生物燃料电池内溶解氧浓度的准确测量,其中FBG主要响应电池内温度变化信息,LPFG主要响应电池内部温度和溶解氧浓度进变化信息。本文从以下几个方面展开了研究:(1)对基于塑料光纤的溶解氧浓度的测量进行了相关实验研究,探索光纤表面溶解氧敏感膜的制备方案和条件,来得到效果最佳的氧传感器。(2)利用溶胶-凝胶法制备将氧敏感膜固定在光纤上,通过光纤镀膜前后的光谱特性变化及镀膜的荧光光谱的变化趋势与邻啡咯啉钌(Ⅱ)的荧光光谱的变化趋势一致,并对敏感膜进行了表征。(3)利用所制作好的传感器对不同溶解氧浓度进行测量。基于塑料光纤的氧传感器,通过对荧光强度的测量来测量氧的浓度,灵敏度较高,说明敏感膜的性能良好。制出的良好敏感膜性能为基于LPFG的氧传感器奠定了基础,可以通过对中心波长偏移情况来测量溶解氧浓度,拟合系数R2达到0.9564。(4)为了提高LPFG溶解氧测量的准确度,设计并制作了FBG-LPFG组合式光纤氧传感器来消除温度的影响,得出:FBG、LPFG的中心波长偏移量与温度之间呈一定的线性关系,FBG的温度灵敏度为0.0063nm/℃,LPFG的温度灵敏度为0.0588nm/℃;测量浓度时,LPFG的中心波长发生偏移,LPFG的折射率灵敏度为-56.66nm/RIU,FBG的中心波长没有发生偏移。说明FBG-LPFG组合式光纤氧传感器可以同时测量浓度和温度。(5)把FBG-LPFG组合式光纤氧传感器放在MFC中测量微生物燃料电池溶解氧浓度的变化,测得当溶解氧浓度为0.24mg/L时,输出功率最大。本文设计的两种测量溶解氧浓度的方法都能有效的对其测量,但是用塑料光纤测量时,是在温度恒定的情况下进行测量的。由于微生物燃料电池的温度受到微生物的新陈代谢、内阻的影响,温度时时变化,在微生物燃料电池的使用中具有一定的局限性,不过本文中塑料光纤传感器是为了探究了敏感膜的制备最优方法及条件,同时为LPFG传感器做了前期的准备,本文制作的消除温度影响的氧传感器对今后的溶解氧传感器的研究具有一定的意义。
[Abstract]:Microbial fuel cell is a new type of clean energy device. It can also treat wastewater while generating electricity. In recent years, microbial fuel cell has become a research hotspot in related fields. Although the microbial fuel cell has many advantages, the electric power of the microbial fuel cell is low. The main abiotic factors affecting the electrical performance of the microbial fuel cell are temperature pH value, dissolved oxygen concentration and substrate concentration. Therefore, it is very important to monitor the non-biological parameters that affect the electrical performance of microbial fuel cells on line, so it is very important to optimize the performance of microbial fuel cells. At present, the methods of dissolved oxygen concentration measurement are time-consuming, laborious, oxygen consuming, difficult to determine in real time and affected by temperature, and can not be effectively used in the measurement of dissolved oxygen concentration in microbial fuel cells. Therefore, it is very important to explore a new method for accurate on-line measurement of dissolved oxygen concentration in microbial fuel cells. In this paper, the long period fiber grating (LPFG) and the fiber Bragg grating (FBG) are coupled to realize the accurate measurement of dissolved oxygen concentration in microbial fuel cells. FBG mainly responds to the variation information of temperature and dissolved oxygen concentration inside the cell. In this paper, the following aspects of the study: 1) the measurement of dissolved oxygen concentration based on plastic fiber has been studied, and the preparation scheme and conditions of the dissolved oxygen sensitive film on the surface of optical fiber have been explored. To obtain the most effective oxygen sensor. 2) the oxygen sensitive film was prepared by sol-gel method and immobilized on the optical fiber. The change trend of fluorescence spectrum before and after optical fiber coating is the same as that of o-Phenanthroline ruthenium (鈪,
本文编号:1794559
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/1794559.html