基于专家系统的轴组式动态称重仪表的研究与设计
本文选题:轴组式动态称重 + 专家系统 ; 参考:《太原理工大学》2017年硕士论文
【摘要】:动态称重(WIM)技术在我国经历了多年的发展,已广泛应用在公路运输计重收费与超限超载检测系统中。目前,广泛应用中的动态称重系统多为轴重式和整车式。前者作为早期产品,采用短秤台结构,称重精度不高却造价低廉;后者作为后续产品,改用长秤台结构,提高了称重精度却降低了过车效率,提高了项目成本。轴组式动态汽车衡在两者基础上结合各自优点,采用单个可以同时容纳三联轴轴组的秤台作为主平台。实现了相对较长的采样时间,提高了采样精度和采集的完整性,避免了轴组被分为多个车轴多次称量而产生的误差,增强了防作弊能力。同时相对整车式降低了施工成本和施工难度,缩短了施工时间,实现了良好的道路环境适应性,成为了动态汽车衡更新换代的首选产品。称重仪表作为系统数据的采集处理单元,车辆轴型识别、轴组载荷及整车总重量的计算等功能都由其来具体实现,其性能决定了整个系统的称重精度和轴型识别率。本文针对轴组式称重仪表的设计提出了相应方案,主要包括仪表模块化硬件的设计与选型、仪表软件多线程开发、称重数据的预处理和专家系统的设计四个部分。本文主要内容如下:第一,介绍了动态称重技术发展的历史背景,论述了现阶段面临的主要问题。针对目前称重产品存在的问题,提出了轴组式动态称重系统及仪表的设计方案。第二,对轴组式动态称重系统的主要组成设备做了详细的介绍,并对各结构的功能及其工作原理进行了说明。依据轴组式动态称重系统设计方案的要求,对仪表硬件电路进行了模块化设计。第三,基于WinCE嵌入式操作系统的多线程模块化编程技术开发的轴组式动态称重仪表的软件设计和基于MCGS组态软件的仪表屏幕程序设计。第四,根据轴组式轴识别信号的特点,论述了上下秤识别、联轴识别功能实现的具体原理;分析了轴组式称重信号的特点,采用加权递推平均滤波算法、平滑滤波算法对称重信号进行了滤波处理,阐述了有效称量段的选取与轴组载荷的计算的方法及依据。第五,根据轴组式动态称重数据的特点,设计了相应专家系统。采用专家系统分析车辆动态称重数据,实现车辆轴型识别功能,提高整车总重量及轴组载荷的称重精度的同时提升了容错运行能力。通过现场测试并依据检定规程对轴组式动态称重系统的称重精度及轴型识别率做了评价。本文主要创新点如下:采用专家系统对动态称重数据进行分析处理,以不同轴型间的显著差异特征作为轴型判别依据,依据轴型识别结果执行相应规则分析有效称量段的数据,完成整车总重量及轴组载荷的匹配与计算。在保证系统稳定可靠运行的同时,提高称重精度及轴型识别率并提升容错运行能力。本课题设计的仪表与配套系统已通过型式评价,整车总重量误差在0.5%以内,双轴刚性参考车辆单轴载荷误差在0.5%以内,其他参考车辆单轴或轴组载荷偏差在1%以内,满足《JJG 907-2006动态汽车衡检定规程》及《GBT21296-2007动态公路车辆自动衡器》中规定的车辆总重量准确度等级1级、单轴或轴组载荷准确度B级首次检定的要求。
[Abstract]:Dynamic weighing (WIM) technology has experienced many years' development in our country. It has been widely used in the system of heavy load and overloading of highway transportation. At present, most of the dynamic weighing systems in widely used are axle load and vehicle type. The former is used as an early product, with short scale structure, low weighing precision but low cost; the latter is used as the latter. To continue the product and use a long scale platform structure, the weighing precision is improved but the vehicle efficiency is reduced, and the cost of the project is improved. On the basis of the two, the axis group dynamic automobile scale combines the advantages of the two, and uses a single scale platform which can simultaneously accommodate the triplex axis group as the main platform. The relative longer sampling time is realized, the sampling accuracy and the acquisition are improved. The integrity of the system avoids the error caused by the multi axle weighing which is divided into multiple axes, and enhances the ability to prevent cheating. At the same time, it has reduced the construction cost and construction difficulty, shortened the construction time and shortened the construction time, realized the good adaptability of the road environment, and became the first choice product of the dynamic steam car scale renewal and replacement. The functions of the collection and processing unit of the data, the identification of vehicle axle type, the load of the axle group and the calculation of the total weight of the whole vehicle are all realized. The performance determines the weighing precision and the axial type recognition rate of the whole system. In this paper, the design and selection of the instrument modular hardware are mainly included in the design of the axle type weighing instrument. Type, instrument software multithreading development, weighing data preprocessing and expert system design four parts. The main contents of this paper are as follows: first, the historical background of the development of dynamic weighing technology is introduced, and the main problems are discussed at the present stage. In view of the problems existing in the present weighing products, the dynamic weighing system and instrument are put forward. Second, the main components of the shaft type dynamic weighing system are introduced in detail, and the functions and working principles of each structure are explained. According to the requirements of the design scheme of the dynamic weighing system of the shaft group type, the hardware circuit of the instrument is modularized. Third, based on the WinCE embedded operating system. The software design of axle group dynamic weighing instrument developed by multi thread modular programming technology and the design of instrument screen program based on MCGS configuration software. Fourth. According to the characteristics of the axis group axis identification signal, this paper discusses the specific principle of the recognition of the upper and lower scales and the realization of the joint axis recognition function, and analyses the characteristics of the axle type weighing signal and uses the weighting. The recursive average filtering algorithm and the smoothing filter algorithm symmetrical heavy signal are filtered. The method and basis for the selection of the effective weighing section and the calculation of the axle load are expounded. Fifth, according to the characteristics of the dynamic weighing data of the shaft group, the expert system is designed. The vehicle dynamic weighing data is analyzed by the expert system, and the vehicle shaft is realized. The model recognition function improves the weighing precision of the total weight of the whole vehicle and the axle load, and improves the fault-tolerant operation ability. Through the field test and according to the verification regulation, the weighing precision and the axial type recognition rate of the shaft type dynamic weighing system are evaluated. The main innovation points of this paper are as follows: the mining expert system is used to analyze the dynamic weighing data. Taking the significant difference characteristics between different axis types as the basis of axial type discrimination, according to the results of axial type recognition, the corresponding rules are used to analyze the data of the effective weighing section and complete the matching and calculation of the total weight of the whole vehicle and the load of the axle group. The instrument and supporting system designed by this project have passed the type evaluation, the total weight error of the whole vehicle is within 0.5%, the single axle load error of the biaxial rigid reference vehicle is less than 0.5%, the single axis or axle load deviation of other reference vehicles is less than 1%, and satisfies the
【学位授予单位】:太原理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP182;U492.321
【参考文献】
相关期刊论文 前10条
1 朱跃光;马宏忠;陈楷;王春宁;李勇;;基于振动信号的电力变压器故障诊断系统的开发[J];电工电能新技术;2013年03期
2 陈琦;李晓东;陈刚;;基于专家系统的建筑工程质量合同争议谈判模型研究[J];工程管理学报;2013年02期
3 曹汉卿;聂伟;;基于专家系统的轮机模拟器自动评分系统研究[J];船电技术;2013年02期
4 曹蕾;;嵌入式系统教学的探索与实践[J];电脑知识与技术;2011年34期
5 李莉;孔哲峰;李鹏;张海蓉;刘崇新;;专家系统与BP神经网络相结合的短期负荷预测[J];陕西电力;2009年01期
6 郑万才;;高速公路计重收费系统应用方案[J];黑龙江交通科技;2008年11期
7 ;EPCS-8200嵌入式工控机主板[J];电子技术应用;2008年11期
8 杨晓林;;傅立叶分析在板壳力学中的应用[J];科技创新导报;2008年25期
9 张华锋;;基于双向混合推理机的知识库系统[J];微计算机信息;2008年11期
10 程路;张宏建;曹向辉;;车辆动态称重技术[J];仪器仪表学报;2006年08期
相关硕士学位论文 前6条
1 高朝春;火焰探测器响应时间检测系统研究[D];长安大学;2015年
2 张晓东;弯板式动态称重系统的仪表设计[D];太原理工大学;2015年
3 兰敏刚;基于WinCE的双台面动态汽车称重装置仪表设计[D];太原理工大学;2013年
4 孙文婷;沥青稳定碎石排水基层在浙江丽龙高速公路上的应用研究[D];长安大学;2009年
5 王建刚;基于UML技术雷达系统故障诊断及隔离软件建模[D];河海大学;2007年
6 贺文华;升降横移式立体车库的控制研究与仿真实现[D];长安大学;2006年
,本文编号:1827598
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/1827598.html