贵州乌蒙山区绿色植被覆盖率退化趋势的图像分析
发布时间:2018-05-01 21:17
本文选题:NDVI遥感数据 + 植被退化趋势 ; 参考:《科技通报》2016年11期
【摘要】:为了分析贵州乌蒙山绿色植被退化趋势,提出针对贵州乌蒙山区绿色植被覆盖率退化趋势的图像分析方法。获取NDVI遥感图像数据信息,运用基于纹理特征的ISODATA算法提取植被图像中每个像素点的纹理特征、位置特征等综合特点,形成特征矢量结构空间;在特征空间中,利用ISODATA算法主动调整参数获取初始聚类数量及聚类中心后,进行区域分割,获取图像区域特征信息;然后建立像元二分模型对植被覆盖度图像特征信息进行分析,通过计算不同年份植被覆盖率对绿色植被覆盖率退化趋势进行预测。实验结果证明,改进的图像分析方法可以对贵州乌蒙山区绿色植被覆盖率退化趋势进行准确分析,精度较高。
[Abstract]:In order to analyze the trend of green vegetation degradation in Wumeng Mountain, Guizhou Province, an image analysis method for the degradation trend of green vegetation coverage in Wumeng Mountain area of Guizhou Province was proposed. The NDVI remote sensing image data information is obtained, and the texture feature and position feature of each pixel in vegetation image are extracted by ISODATA algorithm based on texture feature to form the feature vector structure space. ISODATA algorithm is used to adjust the parameters to get the initial cluster number and cluster center, then the region is segmented to obtain the regional feature information of the image, and then the pixel dichotomy model is established to analyze the feature information of vegetation coverage image. The degradation trend of green vegetation coverage was predicted by calculating vegetation coverage in different years. The experimental results show that the improved image analysis method can accurately analyze the degradation trend of green vegetation coverage in Wumeng Mountain area of Guizhou Province with high accuracy.
【作者单位】: 贵州商学院计算机与信息工程学院;贵州大学计算机科学与技术学院;
【分类号】:TP751
,
本文编号:1831073
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/1831073.html