线驱动柔性充电机器人系统的设计与控制研究
本文选题:充电机器人 + 柔索驱动 ; 参考:《哈尔滨工业大学》2017年硕士论文
【摘要】:随着新能源汽车的飞速发展,充电设施的需求也越来越大。传统充电桩需要人工操作实现充电,自动化程度低,充电完成后不能及时拔下充电头导致充电桩被占用,利用效率低;另外,智能车库的普及也对自动化充电提出了新的需求。传统的关节型机器人体积大、避障能力差,不适合于在狭小空间中应用。因此,本文研制了线驱动柔性智能充电机器人系统,结构小巧、运动灵活,可用于智能车库、停车场等场合,实现对新能源汽车的自动充电。基于工作环境和应用场景的分析,确定了充电机器人系统的功能和性能指标,基于此,设计了基于绳索联动的线驱动柔性机器人系统方案。所设计的机器人包括操作臂和控制箱,其中操作臂由三个两自由度的联动模块和一个两自由度十字轴模块组成,每个模块由3根钢丝绳牵引,每根绳索由一个电机和一套丝杠导轨机构驱动,实现了电机的旋转运动到绳索拉伸运动的转换。绳索拉伸过程中联动模块为等曲率弯曲变形,且具有较高的运动精度和负载能力。所有电机、传动机构、传感器和控制器均放置在一个箱体中(称为控制箱),大大降低了操作臂部分的质量和尺寸,使其可以在狭小环境中灵活运动。另外,控制箱内设计了自动擒释机构,可自动卡紧、释放驱动绳索,使得操作臂与控制箱容易分离,方便更换和调试。为实现充电过程中末端轨迹的精确控制,推导了线驱动柔性充电机器人系统的运动学方程,建立了机器人末端位姿和电机转角之间的映射关系,并采用伪逆法进行逆运动学求解。在此基础上,对机器人末端的典型运动轨迹进行了规划,包括圆弧运动轨迹、直线运动轨迹和一般曲线运动轨迹等。另外,开发了基于ARM处理器的嵌入式控制系统,对各伺服电机进行联合控制;同时,为方便用户设置作业任务,并进行调试,编写了基于Visual C++的上位机软件,通过CAN总线网络与嵌入式控制系统进行实时通讯,可实现多种控制模式,包括独立控制和协同控制,增强了人机交互能力。在上述工作的基础上,完成了机器人样机的集成,并开展了性能测试和典型作业任务的实验研究,包括重复定位精度的测试,以及末端直线轨迹跟踪、圆弧轨迹跟踪和模拟充电等实验,实验结果表明所研制的机器人达到了设计要求。
[Abstract]:With the rapid development of new energy vehicles, the demand for charging facilities is also increasing. The traditional charging pile needs manual operation to realize charging, the automation degree is low, the charging pile is occupied and the utilization efficiency is low due to the failure to unplug the charging head in time after the charging is completed. In addition, the popularization of intelligent garage also puts forward new requirements for automatic charging. The traditional joint robot is not suitable for application in narrow space because of its large volume and poor obstacle avoidance ability. Therefore, a flexible intelligent charging robot system with wire drive is developed in this paper. The system is compact in structure and flexible in motion. It can be used in intelligent garage, parking lot and other occasions to realize the automatic charging of new energy vehicles. Based on the analysis of working environment and application scene, the function and performance index of charging robot system are determined. Based on this, a wire-driven flexible robot system scheme based on rope linkage is designed. The designed robot consists of an operating arm and a control box. The manipulator consists of three linkage modules with two degrees of freedom and a two-degree-of-freedom cross shaft module. Each module is drawn by three wire ropes. Each rope is driven by a motor and a lead screw guide mechanism, which realizes the transformation from the rotating motion of the motor to the stretching motion of the rope. In the process of rope drawing, the linkage module is curved and deformed with equal curvature, and it has high motion precision and load capacity. All motors, transmission mechanisms, sensors and controllers are placed in a box (called control box), which greatly reduces the mass and size of the arm part and allows it to move flexibly in a narrow environment. In addition, the automatic capture and release mechanism is designed in the control box, which can tighten automatically and release the driving rope, which makes the arm and control box easy to be separated and easy to change and debug. In order to accurately control the terminal trajectory during charging, the kinematics equation of the linear driven flexible charging robot system is derived, and the mapping relationship between the end position and the motor rotation angle of the robot is established. The pseudo-inverse method is used to solve the inverse kinematics. On this basis, the typical trajectory of the robot's end is planned, including the arc trajectory, the linear trajectory and the general curve trajectory, etc. In addition, the embedded control system based on ARM processor is developed to control each servo motor jointly. At the same time, the host computer software based on Visual C is written to set the task and debug for the convenience of the user. Through the real-time communication between the CAN bus network and the embedded control system, a variety of control modes, including independent control and cooperative control, can be realized, and the human-computer interaction ability is enhanced. On the basis of the above work, the integration of the robot prototype is completed, and the performance test and the experimental research of typical task are carried out, including the test of the accuracy of the repeated positioning, and the tracking of the terminal straight line. The experimental results show that the designed robot meets the design requirements.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP242
【参考文献】
相关期刊论文 前10条
1 王艳华;缪金;;充电桩发展现状及问题对策研究[J];中国市场;2016年41期
2 温沁月;鲁力群;;国内外立体车库现状及发展综述[J];物流工程与管理;2016年07期
3 谢伟才;;电动汽车充电桩的设计与研究[J];通讯世界;2016年02期
4 姚艳彬;杜兆才;魏志强;;蛇形臂机器人装配系统研究[J];航空制造技术;2015年21期
5 翟士民;刘荣;薛彤;;绳驱动连续型机械臂设计[J];机械工程与自动化;2015年02期
6 袁伟;魏志强;邹方;姚艳彬;;一种欠驱动蛇形臂机器人运动学分析方法[J];机械与电子;2014年11期
7 王旭;齐向东;;电动汽车智能充电桩的设计与研究[J];机电工程;2014年03期
8 邓启亮;徐立涛;栗旭光;;基于MFC串口连续通信的简易实现[J];电子科技;2014年02期
9 高芳;赵强;李瑰贤;;新型线驱动超冗余自由度机器人的设计及分析[J];机械设计与制造;2013年04期
10 高庆吉;王维娟;牛国臣;王磊;郑遵超;;飞机油箱检查机器人的仿生结构及运动学研究[J];航空学报;2013年07期
相关博士学位论文 前1条
1 邵铁锋;气动柔性象鼻型连续机器人研究[D];浙江工业大学;2014年
相关硕士学位论文 前1条
1 刘天亮;面向狭小空间作业的绳索驱动超冗余机械臂的研究[D];哈尔滨工业大学;2016年
,本文编号:1834749
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/1834749.html