可实现温度补偿的压电式微压传感器研究
本文选题:微压传感器 + 压电薄膜 ; 参考:《吉林大学》2017年硕士论文
【摘要】:全球智能化进程的飞速发展,对新一代微传感器系统的研究与开发提出了更高的要求,尤其是高精度高灵敏度微传感器件的研究与开发变得日益迫切。近年来压电材料及其元器件迅速发展,特别是在半导体行业被广泛应用,压电材料根据其压电效应和逆压电效应可以用作传感元件或者驱动元件,压电式压力传感器在桥梁监测、健康监测、航空航天、汽车轮船等方面得到广泛应用,但是压电材料由于其极化强度受温度影响的不稳定性,导致检测精度和灵敏度的提高受到极大限制。目前压电式压力传感器的温度特性研究以及用于压电式压力传感器的温度补偿方法尚处在研究阶段,通常基于实验标定结果利用查表法确定不同温度下的输出与压力的对应关系,这种方法需要耗费大量时间,这严重限制了压电式压力传感器的推广使用。因此,本文设计一种可实现温度补偿的压电式微压传感器,并对其温度特性开展研究,提出基于热敏电阻的温度补偿方法。首先设计了基于硅杯式结构的可实现温度补偿的压电式微压传感器,四周固定的圆形压电薄膜作为传感单元感应外界压力大小,提出了基于热敏电阻的温度补偿方法。根据小挠度理论和压电方程建立传感器电压输出数学模型。通过仿真分析传感器薄膜半径及厚度参数对其输出的影响,获得了优化的传感器结构尺寸。分析了压电薄膜的模态及其振型,确定传感器的工作频率范围。搭建了传感器测试电路及测试平台,实验研究了压电式微压传感器的温度特性,通过对压电薄膜传感单元的材料参数,如内阻、电容等进行测试,分析其受温度影响规律。通过对传感器结构进行测试,分析传感器输出在不同温度下随压力变化的关系,最终根据实验结果得到其性能指标,灵敏度、线性度、精度、以及频率响应特性等。最后根据实验结果分析温度对传感器性能的影响规律,基于热敏电阻的阻值随温度变化而变化的特性提出基于热敏电阻的温度补偿方法,通过电路设计将热敏电阻阻值的变化应用于传感器的输出中,实现压电式微压传感器的温度补偿。本文所提出的补偿方法避免了查表过程中温度测量带来的二次误差,提高了传感器精度。通过实验验证补偿方法的可行性。
[Abstract]:With the rapid development of global intelligence, the research and development of a new generation of micro-sensor systems are required, especially the research and development of high-precision and high-sensitivity microsensor devices become more and more urgent. In recent years, piezoelectric materials and their components have been developed rapidly, especially widely used in semiconductor industry. Piezoelectric materials can be used as sensing or driving components according to their piezoelectric effect and inverse piezoelectric effect. Piezoelectric pressure sensors are widely used in bridge monitoring, health monitoring, aerospace, automobile and ship, etc. The improvement of detection accuracy and sensitivity is greatly limited. At present, the temperature characteristics of piezoelectric pressure sensor and the temperature compensation method for piezoelectric pressure sensor are still in the research stage. Usually, based on the experimental calibration results, the corresponding relationship between output and pressure at different temperatures is determined by using the look-up table method. This method takes a lot of time, which seriously limits the popularization of piezoelectric pressure sensors. Therefore, a kind of piezoelectric micro-pressure sensor which can realize temperature compensation is designed in this paper, and its temperature characteristic is studied, and a temperature compensation method based on thermistor is proposed. Firstly, a piezoelectric micro-pressure sensor based on silicon cup structure is designed to realize temperature compensation. A temperature compensation method based on thermistor is proposed, in which the circular piezoelectric thin film is used as the sensing unit to induce the external pressure. According to the theory of small deflection and piezoelectric equation, the mathematical model of sensor voltage output is established. The influence of the film radius and thickness parameters on the output of the sensor is analyzed by simulation, and the optimized sensor size is obtained. The modes and modes of piezoelectric film are analyzed and the working frequency range of the sensor is determined. The temperature characteristics of piezoelectric micro-pressure sensor are studied experimentally. The temperature effect of piezoelectric thin film sensor is analyzed by testing the material parameters such as internal resistance and capacitance. By testing the structure of the sensor, the relationship between the output of the sensor and the pressure at different temperature is analyzed. Finally, the performance index, sensitivity, linearity, precision and frequency response characteristic are obtained according to the experimental results. Finally, according to the experimental results, the influence of temperature on the performance of the sensor is analyzed. Based on the characteristic that the resistance of thermistor varies with temperature, a temperature compensation method based on thermistor is proposed. The temperature compensation of piezoelectric micro-pressure sensor is realized by applying the change of thermistor resistance to the output of the sensor through circuit design. The compensation method proposed in this paper avoids the secondary error caused by the temperature measurement in the process of looking up the table, and improves the precision of the sensor. The feasibility of the compensation method is verified by experiments.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP212
【相似文献】
相关期刊论文 前10条
1 陈雨;杨继昌;丁建宁;;硅微微压传感器的设计[J];仪表技术与传感器;2008年10期
2 温殿忠;微压传感器研制中的几个技术问题[J];传感器技术;1988年01期
3 钱浚霞;光纤微压传感器[J];工业仪表与自动化装置;1995年06期
4 沈绍群,鲍敏杭,孙立镌;500pa微压传感器的研制[J];世界产品与技术;2000年05期
5 尹颢,杨恒,王文襄,沈绍群,鲍敏杭;抗高过载微压传感器[J];传感器技术;2001年04期
6 邱峰;季霞;;硅微超微压传感器设计[J];机械设计与制造;2007年10期
7 陈伦琼;卓戎;邹锦华;周梅香;;一种微压传感器的应用研究[J];工业仪表与自动化装置;2010年06期
8 ;单晶硅微压传感器的研制[J];航空学报;1979年04期
9 张久惠,沈桂芬,杨学昌;微压传感器的设计分析[J];辽宁大学学报(自然科学版);1988年03期
10 杨学昌,张九惠,沈桂芬;微压传感器制造中的硅杯腐蚀[J];传感器技术;1989年06期
相关会议论文 前1条
1 鲍敏杭;沈绍群;杨恒;王金锁;;微压传感器的快速标定方法—密闭水盒法[A];2001全国压力计量测试技术年会论文集[C];2001年
相关博士学位论文 前1条
1 朱佳利;新型结构的光纤的微压传感器的研究[D];南京师范大学;2016年
相关硕士学位论文 前6条
1 鲍爱建;可实现温度补偿的压电式微压传感器研究[D];吉林大学;2017年
2 尤彩红;硅压阻微压传感器的设计[D];中北大学;2009年
3 朱同淑;压电微压传感器[D];北京邮电大学;2006年
4 蔡东艳;光纤法布里—珀罗微压传感器解调技术研究[D];南京师范大学;2014年
5 刘野;基于SOI材料的微压传感器研究与设计[D];沈阳工业大学;2012年
6 夏文明;硅微微压传感器设计研究[D];江苏大学;2007年
,本文编号:1853172
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/1853172.html