工件尺寸与缺陷自动检测控制系统设计与实现
发布时间:2018-05-13 02:28
本文选题:缺陷检测 + 筛选装置 ; 参考:《西南交通大学》2017年硕士论文
【摘要】:随着制造技术的发展,自动化程度不断提高,生产的产品种类也有很大的扩充,而传统的缺陷检测手段已经远远不能满足要求了,所以对检测技术也提出了越来越高的要求,以适应科技的进步,尤其是在精度、测量范围、可靠性等方面。本文的研究课题来源于成都某大型制造厂的实际工程项目。由于设备生产误差或者人员操作等问题,导致该厂所生产出来的铆钉尺寸及规格不尽相同,而铆钉的缺陷程度以及尺寸的误差程度直接影响铆接的质量。本论文主要工作是根据该厂的迫切需求,设计一套全自动的检测设备,并配合机器视觉系统进行图像处理与检测,按照该厂提出的个性化需求以及精度要求,完成多种类型工件的尺寸、缺陷检测与分类,让工人从重复性且低效率的工作中解脱出来,提高检测效率,提升自动化水平。本论文先介绍了系统整体方案设计以及设备工作原理,然后从机械系统设计、硬件系统设计、控制软件设计三大章节对整个设备进行了详细介绍,具体工作内容与结果如下所述:1、在机械设计方面,利用CREO软件设计该设备的3维机械结构图,包括上料机构,检测机构,和下料机构,并委托工厂加工制作。经过多次修改、测试,设备运行稳定;2、在硬件电路设计方面,对芯片进行选型,使用AltimumDesigner软件设计硬件电路,包括电源模块、微控制器模块、IRF3205驱动电路模块、温度闭环控制电路。发送工厂制板,并进行焊接调试;3、控制软件部分,采用C语言,在KEILuVision4MDK编译软件上编写闭环控制程序,包括主程序、步进电机驱动程序、通信程序、定时中断程序等各个功能子程序。本文设计并实现了一种用于工件尺寸与缺陷检测的自动筛选装置,为机器视觉系统提供了检测平台。通过与机器视觉系统进行联合调试,该筛选装置能够完全满足机器视觉系统对图像获取的要求,并完成筛选分类功能,其检测速度达到50个/min,极大地提升了工件检测的效率,具有切实的应用价值。且该设备提供了一种检测方案,对其他类型的工件检测具有非常好的借鉴意义。
[Abstract]:With the development of manufacturing technology, the degree of automation has been improved, the variety of products produced has been greatly expanded, and the traditional defect detection method has been far from meeting the requirements, so the testing technology has been put forward more and more high requirements. In order to adapt to the progress of science and technology, especially in the accuracy, measurement range, reliability and so on. The research topic of this paper comes from the actual project of a large-scale manufacturing plant in Chengdu. The size and specifications of rivets produced in this factory are different due to the production error of equipment or personnel operation, and the defect degree and error degree of rivets directly affect the quality of riveting. The main work of this paper is to design a set of automatic testing equipment according to the urgent needs of the factory, and to carry out image processing and detection with the machine vision system, according to the requirements of individuation and precision proposed by the factory. Complete the size of various types of work, defect detection and classification, so that workers from the repetitive and inefficient work to free, improve the efficiency of detection, improve the level of automation. This paper first introduces the whole system scheme design and the working principle of the equipment, and then introduces the whole equipment in detail from three chapters: mechanical system design, hardware system design and control software design. In terms of mechanical design, using CREO software to design the 3D mechanical structure of the equipment, including feeding mechanism, testing mechanism, and discharging mechanism, and entrusting the factory to process and manufacture. After many modifications and tests, the equipment runs stably. In the aspect of hardware circuit design, the chip is selected, and the hardware circuit is designed by using AltimumDesigner software, including power supply module, microcontroller module IRF3205 driving circuit module, temperature closed-loop control circuit. Sending factory board, welding debugging, control software part, using C language, compile closed-loop control program on KEILuVision4MDK compiler software, including main program, step motor driver program, communication program, Timing interrupt program and other functional subroutines. This paper designs and implements an automatic screening device for the inspection of workpiece size and defect, which provides a testing platform for machine vision system. By joint debugging with the machine vision system, the screening device can fully meet the requirements of the machine vision system for image acquisition, and complete the function of screening and classification. The detection speed is up to 50 / min, which greatly improves the efficiency of the work piece detection. It has practical application value. And the equipment provides a detection scheme, which has a very good reference significance for other types of workpiece detection.
【学位授予单位】:西南交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41;TP273
【参考文献】
相关期刊论文 前10条
1 胥磊;;机器视觉技术的发展现状与展望[J];设备管理与维修;2016年09期
2 秦亚航;苏建欢;余荣川;;机器视觉技术的发展及其应用[J];科技视界;2016年25期
3 张纯亚;何林;章治国;;开关电源技术发展综述[J];微电子学;2016年02期
4 魏磊;;步进电机的精确速度和位移控制研究[J];科技传播;2015年24期
5 戴亚辉;罗亮;刘知贵;;拉铆钉在线检测系统的自动供料机构设计与仿真[J];机械设计与制造;2015年10期
6 李金华;;德国“工业4.0”与“中国制造2025”的比较及启示[J];中国地质大学学报(社会科学版);2015年05期
7 张茉楠;;中国制造2025实现变道超车[J];全球化;2015年06期
8 王丹;;半导体制冷器件原理及其应用[J];河南科技;2015年07期
9 鲍湘之;李东福;李强;张振宇;;基于机器视觉的圆环筛选机的设计[J];制造业自动化;2015年01期
10 李彦丽;;步进电机失步原因分析及常见故障检测[J];电子工业专用设备;2014年12期
,本文编号:1881258
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/1881258.html