一类多智能体系统的分布式跟踪控制
发布时间:2018-05-27 21:42
本文选题:非线性多智能体系统 + 一致性 ; 参考:《曲阜师范大学》2017年硕士论文
【摘要】:随着中国科技的发展和不断进步,多智能体系统在工程当中的应用越来越广泛,尤其是在航空航天、机器人等人工智能领域都起着越来越重要的作用。多智能体系统是由许许多多的智能体之间的自由组合构成的。这些智能体能够对多变的环境迅速地做出反应,并且这些智能体能够自由交互、互相配合的完成各种复杂任务。多智能体具有许多的特性,例如分布性、自主性和协调性等的特征,并且拥有着比单个智能体更高的智能性和处理种种庞大问题的能力。因此,对多智能体系统的跟踪控制问题的研究已经成为多智能体系统领域当中一个十分重要的热点问题。然而,如何实现各个智能体之间的协调合作这个问题是所研究的一个重点的问题。本文研究了已知控制方向的和未知控制方向的非线性多智能体系统的一致性的问题。构造了一个新的Lyapunov泛函,按照Lyapunov稳定性的理论,导出了非线性多智能体系统的稳定性判据。首先研究的是已知控制方向的一阶与二阶的非线性多智能体系统,然后推广到了未知控制方向的一阶与二阶的非线性多智能体系统。所得稳定性判据均可用Matlab中的Simulink仿真验证。本文的主要内容分为如下5章:第1章分析了非线性多智能体系统的研究背景及其意义,并且简要的介绍了非线性多智能体系统的一致性控制的研究的现状,给出了本文所要解决的问题。第2章简要介绍了代数图论、矩阵的Kronecker积、Lyapunov稳定性理论以及本文需用到的重要引理。第3章首先讨论已知控制方向的一阶与二阶非线性多智能体系统的分布式跟踪控制。我们使得系统更加的复杂,首先对于一阶系统,设计了一个新的Lyapunov泛函,利用该Lyapunov泛函以及Lyapunov稳定性理论导出了稳定性判据。然后推广到了二阶系统,进而又设计了一个新的Lyapunov泛函,利用该Lyapunov泛函以及Lyapunov稳定性理论导出了稳定性判据。最后,做了仿真实例说明了本章所得稳定性判据结果的正确性。第4章是对第3章结果的进一步改进,研究的是未知控制方向的非线性多智能体系统的一致性。首先对于一阶系统,设计了一个新的Lyapunov泛函,利用该Lyapunov泛函以及Lyapunov稳定性理论导出了稳定性判据。然后推广到了二阶系统,进而又设计了一个新的Lyapunov泛函,利用该Lyapunov泛函以及Lyapunov稳定性理论导出了稳定性判据。最后,做了仿真实例说明了本章所得稳定性判据结果的准确性。第5章总结了本文的主要研究内容,并且对所得的稳定性判据进行了一下分析,并对下一步的研究重心作了进一步的展望。
[Abstract]:With the development and continuous progress of science and technology in China, the application of multi-agent systems in engineering is becoming more and more extensive, especially in the fields of artificial intelligence such as aeronautics and Astronautics, robots, and so on. The multi-agent system is composed of the free combination of many many agents. The environment is quick to respond, and these agents can interact freely and cooperate with each other to accomplish a variety of complex tasks. The multi-agent has many characteristics, such as the characteristics of distribution, autonomy and coordination, and has the ability to be more intelligent than a single agent and to deal with a variety of huge problems. The research on the tracking control problem of the energy system has become a very important issue in the field of multi-agent system. However, how to realize the coordination and cooperation between the various agents is a key problem. This paper studies the nonlinear multiple intelligence of the known control direction and the unknown control direction. A new Lyapunov functional is constructed. According to the theory of Lyapunov stability, the stability criterion of the nonlinear multi-agent system is derived. First, the first and two order nonlinear multi-agent systems of the known control direction are studied, and then it is extended to the first and two orders of the unknown control direction. The stability criterion of the nonlinear multi-agent system can be verified by Simulink simulation in Matlab. The main contents of this paper are divided into 5 chapters as follows: the first chapter analyzes the research background and significance of the nonlinear multi-agent system, and briefly introduces the status of the research on the consistency control of the nonlinear multi-agent system, and gives a brief introduction of the status of the research on the consistency control of the nonlinear multi-agent system. The second chapter briefly introduces the algebraic graph theory, the Kronecker product of matrix, the Lyapunov stability theory and the important lemma needed in this paper. The third chapter first discusses the distributed tracking control of the first and two order nonlinear multi-agent systems of the known control direction. In the first order system, a new Lyapunov functional is designed. The stability criterion is derived by using the Lyapunov functional and the Lyapunov stability theory. Then it is generalized to the two order system, and then a new Lyapunov functional is designed. The stability criterion is derived by using the Lyapunov functional and the Lyapunov stability theory. Finally, the imitation is made. The true example shows the correctness of the result of the stability criterion obtained in this chapter. The fourth chapter is the further improvement of the results of the third chapter and the consistency of the nonlinear multi-agent system with unknown control direction. First, a new Lyapunov functional is designed for the first order system, and the Lyapunov functional and the Lyapunov stability theory are used to guide the system. The stability criterion is given. Then it is extended to the two order system, and then a new Lyapunov functional is designed. The stability criterion is derived by using the Lyapunov functional and the Lyapunov stability theory. Finally, a simulation example is made to illustrate the accuracy of the result of the stability criterion obtained in this chapter. The fifth chapter summarizes the main research contents of this paper. The stability criterion is also analyzed, and the future research focus is further prospected.
【学位授予单位】:曲阜师范大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP18;TP13
【参考文献】
相关期刊论文 前4条
1 顾建忠;赵连杰;杨洪勇;;带有未知参数的多智能体系统的自适应分布控制[J];系统科学与数学;2015年03期
2 彭钧敏;王佳楠;叶旭东;;不确定型网络系统的分布式自适应跟踪控制器(英文)[J];自动化学报;2013年10期
3 闵颖颖;刘允刚;;Barbalat引理及其在系统稳定性分析中的应用[J];山东大学学报(工学版);2007年01期
4 王秀清;陈兆英;于朝霞;;关于矩阵的Kronecker积的一些性质[J];山东师范大学学报(自然科学版);2010年04期
,本文编号:1943876
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/1943876.html