MEMS音叉陀螺结构振动非线性及抑制技术研究
本文选题:MEMS陀螺 + 振动非线性 ; 参考:《中国航天科技集团公司第一研究院》2017年硕士论文
【摘要】:MEMS陀螺仪具有体积小、重量轻、成本低等优点,在军事、民用领域内都有着非常广阔的应用前景,自诞生起一直就是各国的研究热点之一。论文针对双质量块线振动音叉式硅微机械陀螺仪敏感结构的振动非线性问题展开研究。论文首先论述了线振动MEMS音叉陀螺仪的结构与工作原理,将其简化成带阻尼的二阶弹簧谐振子系统,引入三次非线性刚度,利用达芬方程建立了陀螺驱动轴振动微分方程,利用多尺度法求解达芬方程。其次,论文研究了陀螺驱动轴的振动非线性问题,利用能量法、ANSYS仿真软件计算得到驱动梁的三次非线性刚度,通过理论计算得到陀螺驱动梳齿的三次非线性刚度,结果表明,驱动梁的非线性刚度远大于梳齿的非线性刚度,因此,驱动梁的非线性刚度是导致陀螺驱动轴振动非线性的主要原因;推导了陀螺驱动轴不发生非线性迟滞的振幅临界值与其振动非线性系数之间的数学关系;最后,通过对陀螺驱动轴开环幅频特性数据的处理,得到其非线性系数的表征,并依据试验测定的非线性系数,得到陀螺的驱动振幅临界值的理论值,与试验值相吻合。再次,论文提出了音叉线振动硅微机械陀螺仪的结构设计与实现,通过理论研究和仿真分析相结合,确定了改版后MEMS陀螺仪的结构参数,在此基础上,具体讨论了结构梁的设计,模态误差补偿,抗过载等;设计了改进后的MEMS陀螺的工艺流程和版图,阐述了部分工艺、真空封装。最后,组表测试。仿真和试验结果表明:陀螺结构的驱动轴振动非线性系数下降为1/270,其不发生非线性迟滞的振幅临界值提高约21.83倍。
[Abstract]:MEMS gyroscopes have many advantages, such as small size, light weight, low cost and so on. They have a very broad application prospect in military and civil fields. Since their birth, MEMS gyroscopes have been one of the research hotspots all over the world. In this paper, the vibration nonlinearity of silicon micromechanical gyroscopes with double mass line vibration tuning fork is studied. In this paper, the structure and working principle of MEMS tuning fork gyroscope with linear vibration are discussed firstly, which is simplified as a second-order spring harmonic oscillator system with damping, and the differential equation of vibration of gyroscope driving axis is established by introducing cubic nonlinear stiffness. The multi-scale method is used to solve the Dafen equation. Secondly, the nonlinear vibration of gyroscope driving shaft is studied. The cubic nonlinear stiffness of the driving beam is calculated by using the energy method and ANSYS software, and the cubic nonlinear stiffness of the gyroscope driven comb is obtained by theoretical calculation. The nonlinear stiffness of the driving beam is much larger than the nonlinear stiffness of the comb tooth. Therefore, the nonlinear stiffness of the driving beam is the main cause of the nonlinear vibration of the gyroscope drive shaft. The mathematical relation between the amplitude critical value of gyroscope driving axis without nonlinear hysteresis and its nonlinear coefficient is derived. Finally, the nonlinear coefficient is obtained by processing the amplitude frequency characteristic data of gyroscope drive shaft. According to the nonlinear coefficient measured by experiment, the theoretical value of the driving amplitude critical value of gyroscope is obtained, which is in agreement with the experimental value. Thirdly, the structure design and implementation of tuning fork line vibrating silicon micromachined gyroscope are proposed. The structural parameters of the modified MEMS gyroscope are determined through theoretical research and simulation analysis. The design of the structure beam, mode error compensation, overload resistance and so on are discussed in detail, the process flow and layout of the improved MEMS gyroscope are designed, and part of the process and vacuum package are described. Finally, the group table test. The simulation and experimental results show that the nonlinear coefficient of driving shaft vibration of gyroscope structure is reduced to 1 / 270, and the critical value of amplitude without nonlinear hysteresis is increased by 21.83 times.
【学位授予单位】:中国航天科技集团公司第一研究院
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP212
【参考文献】
相关期刊论文 前10条
1 许鹏;王帆;董冰玉;;一种低成本自适应的MEMS陀螺温度补偿方法[J];微纳电子技术;2016年08期
2 周鑫;肖定邦;吴学忠;;微机电陀螺的现状与发展趋势[J];国防科技;2015年04期
3 满兴博;伍晓红;孙清;;采用非线性Galerkin方法的柔性梁模型降阶研究[J];西安交通大学学报;2015年07期
4 王攀;黄丽斌;李宏生;倪云舫;;硅微陀螺仪闭环正交校正研究[J];传感技术学报;2013年03期
5 王嫘;韩丰田;董景新;刘云峰;;微静电陀螺仪的结构设计与工艺实现[J];纳米技术与精密工程;2011年03期
6 陈志勇;周斌;张嵘;;微机械角振动谐振器在低气压下的非线性振动[J];仪器仪表学报;2010年11期
7 王伟;刘军洁;;Z轴微机械陀螺仪的空气阻尼分析[J];西安工业大学学报;2010年03期
8 董林玺;李寿洛;陈金丹;颜海霞;许立;王光义;孙玲玲;;不同检测电容结构对MEMS电容传感器性能的影响分析[J];传感技术学报;2010年04期
9 文永蓬;王安麟;姜涛;刘钊;刘广军;;音叉振动式微机械陀螺弹性梁的研究[J];高技术通讯;2008年12期
10 张均红;赵君辙;;惯性导航中陀螺仪的研究现状及发展趋势[J];科协论坛(下半月);2008年07期
相关博士学位论文 前2条
1 关荣锋;MEMS器件设计、封装工艺及应用研究[D];华中科技大学;2005年
2 陈永;基于滑膜阻尼效应的音叉式微机械陀螺研究[D];中国科学院研究生院(上海微系统与信息技术研究所);2004年
相关硕士学位论文 前4条
1 张琼;电容式微机械陀螺仪的研究[D];中北大学;2009年
2 孙家庆;硅微振动陀螺制造误差电补偿方法研究[D];南京理工大学;2008年
3 郭慧芳;三框架硅微机械陀螺的结构设计及加工工艺研究[D];中北大学;2008年
4 祁晓瑾;MEMS高g值加速度传感器研究[D];中北大学;2007年
,本文编号:2003084
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2003084.html