当前位置:主页 > 科技论文 > 自动化论文 >

卷积神经网络特征重要性分析及增强特征选择模型

发布时间:2018-06-21 14:30

  本文选题:卷积神经网络 + 特征重要性分析 ; 参考:《软件学报》2017年11期


【摘要】:卷积神经网络等深度神经网络凭借着其强大的表达能力、突出的分类性能,已在不同领域内得到了广泛应用.当面对高维特征时,深度神经网络通常被认为具有较好的鲁棒性,能够隐含地对特征进行选择,但由于网络参数巨大,如果数据量达不到足够的规模,则会导致学习不充分,因而可能无法达到最优的特征选择.而神经网络的黑箱特性使得无法观测神经网络选择了哪些特征,也无法评估其特征选择的能力.为此,以卷积神经网络为例,首先研究如何显式地表达神经网络中的特征重要性,提出了基于感受野的特征贡献度分析方法;其次,将神经网络特征选择与传统特征评价方法进行对比分析发现,在非海量样本的情况下,传统特征评价方法对高重要性特征和噪声特征的识别能力反而能够超过神经网络.因此,进一步地提出了卷积神经网络增强特征选择模型,将传统特征评价方法对特征重要性的理解结合到神经网络的学习过程中,以辅助深度神经网络进行特征选择.在基于文本的社交媒体用户属性建模任务下进行了对比实验,结果验证了该模型的有效性.
[Abstract]:Convolutional neural networks such as depth neural networks have been widely used in different fields because of their strong expressive ability and outstanding classification performance. When faced with high dimensional features, deep neural networks are generally considered to be robust and can implicitly select features. However, because of the huge network parameters, if the amount of data does not reach enough scale, it will lead to inadequate learning. As a result, it may not be possible to achieve optimal feature selection. The black box characteristics of the neural network make it impossible to observe which features the neural network has selected and to evaluate its ability of feature selection. For this reason, taking convolutional neural networks as an example, this paper studies how to express the importance of features in neural networks explicitly, and puts forward a method of feature contribution analysis based on receptive field. By comparing neural network feature selection with traditional feature evaluation method, it is found that in the case of non-massive samples, the recognition ability of traditional feature evaluation method for high-importance features and noise features is higher than that of neural network. Therefore, an enhanced feature selection model based on convolutional neural networks is proposed. The traditional feature evaluation method is combined with the understanding of the importance of features in the learning process of the neural network, and the feature selection is carried out with the help of the depth neural network. The effectiveness of the model is verified by a comparative experiment under the task of text-based social media user attribute modeling.
【作者单位】: 清华大学智能技术与系统国家重点实验室;清华大学计算机科学与技术系;
【分类号】:TP183

【相似文献】

相关会议论文 前10条

1 徐春玉;;基于泛集的神经网络的混沌性[A];1996中国控制与决策学术年会论文集[C];1996年

2 周树德;王岩;孙增圻;孙富春;;量子神经网络[A];2003年中国智能自动化会议论文集(上册)[C];2003年

3 罗山;张琳;范文新;;基于神经网络和简单规划的识别融合算法[A];2009系统仿真技术及其应用学术会议论文集[C];2009年

4 郭爱克;马尽文;丁康;;序言(二)[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年

5 钟义信;;知识论:神经网络的新机遇——纪念中国神经网络10周年[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年

6 许进;保铮;;神经网络与图论[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年

7 金龙;朱诗武;赵成志;陈宁;;数值预报产品的神经网络释用预报应用[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年

8 田金亭;;神经网络在中学生创造力评估中的应用[A];第十二届全国心理学学术大会论文摘要集[C];2009年

9 唐墨;王科俊;;自发展神经网络的混沌特性研究[A];2009年中国智能自动化会议论文集(第七分册)[南京理工大学学报(增刊)][C];2009年

10 张广远;万强;曹海源;田方涛;;基于遗传算法优化神经网络的故障诊断方法研究[A];第十二届全国设备故障诊断学术会议论文集[C];2010年

相关重要报纸文章 前10条

1 美国明尼苏达大学社会学博士 密西西比州立大学国家战略规划与分析研究中心资深助理研究员 陈心想;维护好创新的“神经网络硬件”[N];中国教师报;2014年

2 卢业忠;脑控电脑 惊世骇俗[N];计算机世界;2001年

3 葛一鸣 路边文;人工神经网络将大显身手[N];中国纺织报;2003年

4 中国科技大学计算机系 邢方亮;神经网络挑战人类大脑[N];计算机世界;2003年

5 记者 孙刚;“神经网络”:打开复杂工艺“黑箱”[N];解放日报;2007年

6 本报记者 刘霞;美用DNA制造出首个人造神经网络[N];科技日报;2011年

7 健康时报特约记者  张献怀;干细胞移植:修复受损的神经网络[N];健康时报;2006年

8 刘力;我半导体神经网络技术及应用研究达国际先进水平[N];中国电子报;2001年

9 ;神经网络和模糊逻辑[N];世界金属导报;2002年

10 邹丽梅 陈耀群;江苏科大神经网络应用研究通过鉴定[N];中国船舶报;2006年

相关博士学位论文 前10条

1 杨旭华;神经网络及其在控制中的应用研究[D];浙江大学;2004年

2 李素芳;基于神经网络的无线通信算法研究[D];山东大学;2015年

3 石艳超;忆阻神经网络的混沌性及几类时滞神经网络的同步研究[D];电子科技大学;2014年

4 王新迎;基于随机映射神经网络的多元时间序列预测方法研究[D];大连理工大学;2015年

5 付爱民;极速学习机的训练残差、稳定性及泛化能力研究[D];中国农业大学;2015年

6 李辉;基于粒计算的神经网络及集成方法研究[D];中国矿业大学;2015年

7 王卫苹;复杂网络几类同步控制策略研究及稳定性分析[D];北京邮电大学;2015年

8 张海军;基于云计算的神经网络并行实现及其学习方法研究[D];华南理工大学;2015年

9 李艳晴;风速时间序列预测算法研究[D];北京科技大学;2016年

10 陈辉;多维超精密定位系统建模与控制关键技术研究[D];东南大学;2015年

相关硕士学位论文 前10条

1 章颖;混合不确定性模块化神经网络与高校效益预测的研究[D];华南理工大学;2015年

2 贾文静;基于改进型神经网络的风力发电系统预测及控制研究[D];燕山大学;2015年

3 李慧芳;基于忆阻器的涡卷混沌系统及其电路仿真[D];西南大学;2015年

4 陈彦至;神经网络降维算法研究与应用[D];华南理工大学;2015年

5 董哲康;基于忆阻器的组合电路及神经网络研究[D];西南大学;2015年

6 武创举;基于神经网络的遥感图像分类研究[D];昆明理工大学;2015年

7 李志杰;基于神经网络的上证指数预测研究[D];华南理工大学;2015年

8 陈少吉;基于神经网络血压预测研究与系统实现[D];华南理工大学;2015年

9 张韬;几类时滞神经网络稳定性分析[D];渤海大学;2015年

10 邵雪莹;几类时滞不确定神经网络的稳定性分析[D];渤海大学;2015年



本文编号:2049044

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2049044.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户092b9***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com