当前位置:主页 > 科技论文 > 自动化论文 >

基于混合驱动的上肢康复机器人的设计

发布时间:2018-07-15 19:03
【摘要】:国内外脑中风的发病率、致死率居高不下。随着经济的发展,现代医疗水平得到很大的提高,脑中风的死亡率得以减小。脑中风患者幸存后一般都出现上肢偏瘫、半身不遂等症状,这些病症的康复治疗费用成了患者家庭的沉重负担。目前,为了改善脑中风患者康复治疗的现状,国内外很多研究学者对上肢康复机器人进行研究。但是大部分康复机器人的驱动方式较为单一:一种是由电机、减速器通过齿轮之间的配合直接驱动各个关节,这种驱动方式让各个关节处的重量都相应的增加,使得各个关节驱动电机的负载增加。另一种是由电机与绳索配合驱动各个关节,这种驱动方式虽然让各个关节的重量减轻,但是相对于电机直接驱动,绳驱动的传动精度相对较低,传动不精确,不利于机器人的精确控制。本文提出了一种基于混合驱动的上肢康复机器人可以很好的解决这些问题。具体研究工作内容如下:首先,对绳驱动关节进行设计。设计一种新的绳驱动关节来代替传统的电机直接驱动上肢康复机器人的腕关节,减轻了末端执行机构的重量,减小了前端电机的负载;依据绳驱动关节的原理对绳驱动关节的动力源结构、绳传动结构、驱动端结构、钢丝绳两端的连接方式进行设计,并对钢丝绳直接驱动圆盘槽轮方式从安装结构以及驱动原理上进行了验证;在此基础上对钢丝绳的预紧机构进行了分析,设计出了一种新型的钢丝绳预紧装置,解决了钢丝绳在安装完成后不能二次预紧的问题。其次,对绳驱动关节中的钢丝绳传动系统进行分析。通过对钢丝绳传动中弹性滑动现象产生的原因加以分析,找出改善弹性滑动现象的方法;通过对比带传动中的各种理论对钢丝绳传动进行受力进行分析,得出钢丝绳所受拉力的大小;钢丝绳在传动过程中不可避免的会受到摩擦力的影响,运用摩擦力补偿法对钢丝绳与绳外软管之间的摩擦因数进行试验研究分析,得出了钢丝绳所受摩擦力与负载之间的关系;依据钢丝绳的拉力以及摩擦力的大小对钢丝绳进行选型,确定钢丝绳的型号;应用ADAMS对绳驱动关节中的钢丝绳进行仿真分析,验证了理论分析的正确性,为混合驱动上肢康复机器人的研究奠定了理论基础。第三,对基于混合驱动的上肢康复机器人进行结构设计。通过对脑中风导致的运动功能障碍分析,得出脑中风患者的上肢对应的康复训练,为机器人的结构设计提供康复理论基础;通过人体上肢解剖学对上肢肩关节、肘关节和腕关节的结构以及活动空间进行分析,确定各个关节的活动范围,为机器人的设计提供运动理论基础;在此基础上对机器人的各个关节进行设计,并使用Pro/E完成整机的设计。第四,对基于混合驱动的上肢康复机器人进行动力学分析。应用拉格朗日力学法对机器人系统进行动力学分析,得出了各个参数的求解方法;应用MATLAB绘制匀速状态下机器人的各个关节理论力矩曲线,应用ADAMS仿真出在同样条件下机器人的各个关节仿真力矩曲线,将两种力矩曲线进行对比,验证了理论分析的正确性;利用ADAMS进行匀加速状态下的仿真分析,得到了驱动力矩;在此基础上,确定电机、电机适配驱动器等部件。最后,对基于混合驱动的上肢康复机器人进行试验探究。将设计的机器人进行加工组装;对混合驱动绳驱动关节部分进行试验,验证了钢丝绳传动中的设计与选型的正确性;对整机进行动力学试验,验证了仿真力矩分析的正确性。
[Abstract]:The incidence and death rate of cerebral apoplexy at home and abroad are high. With the development of the economy, the level of modern medical treatment has been greatly improved, the death rate of stroke is reduced. After the survival of stroke patients, the symptoms of hemiplegia and hemiplegic, such as the survival of the patients, have become a heavy burden on the family. In order to improve the status of rehabilitation therapy for stroke patients, many researchers at home and abroad have studied the upper limb rehabilitative robot. But most of the rehabilitation robots have a single driving mode: one is the motor, the reducer drives the joints directly through the coordination between the gears, which makes the weight of each joint at the joint. The corresponding increase makes the load of each joint drive motor increase. The other is driven by the motor and the rope to drive each joint. This driving method reduces the weight of each joint, but relative to the direct drive of the motor, the transmission precision of the rope drive is relatively low, the transmission is inaccurate and it is not conducive to the precise control of the robot. A hybrid driven rehabilitation robot based on the upper limb can be used to solve these problems well. The specific research work is as follows: first, the design of the rope drive joint is designed. A new rope driven joint is designed to replace the traditional motor directly to drive the wrist of the upper limb rehabilitation robot and reduce the weight of the end actuator. The load of the front motor is reduced, the power source structure of the rope driving joint, the rope drive structure, the driving end structure, the connection mode of the two ends of the wire rope are designed according to the principle of the rope driving joint, and the way of the wire rope direct drive disc groove wheel is verified from the installation structure and the driving principle. On this basis, the wire rope is used. The pretightening mechanism is analyzed, and a new type of wire rope pretightening device is designed to solve the problem that the wire rope can not be pretensiated two times after the installation is completed. Secondly, the wire rope transmission system in the rope driving joint is analyzed. The cause of the elastic sliding phenomenon in the wire rope transmission is analyzed, and the improvement projectile is found out. The force of the wire rope transmission is analyzed by comparing various theories in the belt transmission, and the tension of the wire rope is obtained. The friction force will inevitably be affected by the wire rope in the transmission process, and the friction coefficient between the wire rope and the hose outside the rope is tested by the friction compensation method. The relationship between the friction force and the load of the wire rope is obtained, and the type of the wire rope is selected according to the tension of the wire rope and the size of the friction force, and the model of the wire rope is determined. The simulation analysis of the wire rope in the rope driving joint is carried out with ADAMS to verify the correctness of the theory analysis and to drive the rehabilitation machine for the upper limb of the hybrid. The human research laid the theoretical foundation. Third, the structure design of the upper limb rehabilitation robot based on the hybrid drive. Through the analysis of the movement dysfunction caused by cerebral apoplexy, the rehabilitation training of the upper limb of the stroke patients is obtained, which provides the rehabilitation theory for the structure design of the robot, and the upper limb anatomy is used to the upper limb through the anatomy of the body upper limb. The structure of shoulder joint, elbow joint and wrist joint and active space are analyzed, the range of movement of each joint is determined, and the theoretical basis of motion is provided for the design of robot. On this basis, each joint of the robot is designed and the design of the whole machine is completed using Pro/E. Fourth, into the hybrid driven rehabilitation robot of the upper limb. The dynamic analysis of action mechanics is applied to the dynamic analysis of the robot system by using the Lagrange mechanics method. The solving method of each parameter is obtained. MATLAB is used to draw the theoretical moment curve of each joint of the robot under uniform speed, and the simulation moment curve of each joint of the robot under the same condition is simulated with ADAMS, and two kinds of torque curve are made. The line is compared to verify the correctness of the theoretical analysis; the driving torque is obtained by the simulation analysis of the uniform acceleration state using ADAMS. On this basis, the motor and the motor fit driver are determined. Finally, the experimental investigation on the hybrid driven rehabilitation robot of the upper limb is carried out. The designed robot is processed and assembled; The joint part of the hybrid drive rope is tested to verify the correctness of the design and selection of the wire rope transmission, and the dynamic test of the whole machine proves the correctness of the simulation moment analysis.
【学位授予单位】:江苏大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP242

【参考文献】

相关期刊论文 前8条

1 吴丽钏;邓石凤;梁斌;梁颖茵;;中风病人跌倒原因分析及对策[J];中国护理管理;2010年07期

2 纪钢;;第二次全国残疾人抽样调查主要数据公报(第二号)[J];中国残疾人;2007年06期

3 张庆元;王耀光;黄建平;林一均;李辰佳;;103例脑卒中患者急性期心理障碍的研究[J];中国神经精神疾病杂志;2006年01期

4 朱江红;带传动中的弹性滑动分析[J];镇江高专学报;2003年03期

5 王耀兵,季林红,王广志,黄靖远;脑神经康复机器人研究的进展与前景[J];中国康复医学杂志;2003年04期

6 秦燕;脑卒中瘫痪患者健、患侧输液对肢体运动功能恢复的影响[J];中国临床康复;2003年13期

7 宋军,,陈可冀;提高中西医结合治疗脑血管病疗效的途径与方法刍议[J];中国中西医结合杂志;1994年06期

8 韩朔眺,

本文编号:2125085


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2125085.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户f546a***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com