面向对象的影像分析方法应用研究
[Abstract]:Nowadays, with the improvement of spatial resolution of remote sensing image, the traditional image analysis method based on pixel can not only not make full use of the spatial detail information in the image, but also have a large error of missing and error. At the same time, more serious "salt and pepper noise" appeared, which greatly affected the accuracy of various application results. The object-oriented image analysis method can effectively suppress the above problems, so it has received wide attention in geoscience field. In this paper, the object oriented image analysis method is used to study the terrain object segmentation based on high resolution remote sensing image and the extraction of special geomorphologic object. The main work accomplished in this paper is: 1. This paper proposes an object oriented remote sensing image change detection method based on KL divergence, which is classified by natural split point method by calculating the KL divergence value. It is different from the traditional change detection method. In this paper, the optimal parameters of object oriented image segmentation are first calculated, and the images with different phases are segmented, and the image objects are processed by topological superposition. Then, the grayscale partition statistics of each image object are carried out, and the KL divergence is calculated. Finally, the variation degree of the KL divergence is divided by different classification methods, and the influence of different segmentation parameters and different classification methods on the variation degree is analyzed. The automatic terrain region segmentation method based on regional growth method is realized. In this method, the runoff nodes of the actual valley network are taken as seed points, the corresponding growth threshold is established on the basis of statistical analysis of the quantitative index of terrain characteristics, and the image processing and edge boundary extraction of the segmented region are carried out. The obtained boundary line is used to realize the automatic segmentation of terrain area. By using this method, taking the typical loess plateau landform area of China as an example, using and analyzing the curvature structure characteristics of the surface section of this area, the automatic segmentation of the three topographic types of gully, gully slope and furrow bottom is realized. Three special topographic objects. 3 are generated. Based on the object oriented method, the image segmentation levels of the terrain between gully, slope and bottom are established, and the multiscale segmentation parameters are designed according to the geomorphological features of the gully head. The multi-scale segmentation of gully slope level is carried out to generate the image object for the gully head region. Based on the combination of hydrological characteristics, topographic information and spatial data topological relation, the recognition model of gully head object is established to realize the recognition of gully head in a large area of river basin.
【学位授予单位】:山东科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP751
【参考文献】
相关期刊论文 前10条
1 田丹;刘爱利;丁浒;张雯;齐威;;地貌形态类型面向对象分类法的改进[J];地理与地理信息科学;2016年02期
2 刘玮;李发源;熊礼阳;刘双琳;王轲;;基于区域生长的黄土地貌沟沿线提取方法与实验[J];地球信息科学学报;2016年02期
3 佃袁勇;方圣辉;姚崇怀;;一种面向地理对象的遥感影像变化检测方法[J];武汉大学学报(信息科学版);2014年08期
4 ZHU Hongchun;TANG Guoan;QIAN Kejian;LIU Haiying;;Extraction and Analysis of Gully Head of Loess Plateau in China Based on Digital Elevation Model[J];Chinese Geographical Science;2014年03期
5 李亮;龚煈;李雪;王凯;;像斑直方图相似性测度的高分辨率遥感影像变化检测[J];遥感学报;2014年01期
6 祝锦霞;王珂;;面向对象的高分辨率影像变化检测方法研究[J];农业机械学报;2013年04期
7 宋效东;汤国安;周毅;田剑;;基于并行GVF Snake模型的黄土地貌沟沿线提取[J];中国矿业大学学报;2013年01期
8 周启鸣;;多时相遥感影像变化检测综述[J];地理信息世界;2011年02期
9 晏实江;汤国安;李发源;董有福;;利用DEM边缘检测进行黄土地貌沟沿线自动提取[J];武汉大学学报(信息科学版);2011年03期
10 陈杰;邓敏;肖鹏峰;杨敏华;梅小明;;粗糙集高分辨率遥感影像面向对象分类[J];遥感学报;2010年06期
相关博士学位论文 前3条
1 汤玉奇;面向对象的高分辨率影像城市多特征变化检测研究[D];武汉大学;2013年
2 周毅;基于DEM的黄土高原正负地形及空间分异研究[D];南京师范大学;2011年
3 黄慧萍;面向对象影像分析中的尺度问题研究[D];中国科学院研究生院(遥感应用研究所);2003年
相关硕士学位论文 前5条
1 罗裳;基于KL熵矩阵近似问题的研究[D];华南理工大学;2014年
2 劳小敏;基于对象的高分辨率遥感影像土地利用变化检测技术研究[D];浙江大学;2013年
3 周增坡;基于多源数据的典型地貌形态特征提取方法研究[D];东北师范大学;2009年
4 陈绍宇;高塬沟壑区溯源侵蚀发生发育规律研究[D];中国科学院研究生院(教育部水土保持与生态环境研究中心);2009年
5 宋佳;基于DEM的我国地貌形态类型自动划分研究[D];西北大学;2006年
,本文编号:2125649
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2125649.html