智能雾培试验台控制系统的研究及开发
[Abstract]:Fog culture stands out from the development of soilless cultivation technology. First, in the fog culture system, the researchers tried different types of atomizers. While they noticed that different atomizers caused differences in the size of droplets, how did the size of droplets affect the growth and effects of fog cultivation crops? It is not clear yet. Secondly, in the fog control system, how to detect the multiple factors and how to adjust and control in the fog culture environment is also a problem. Finally, how to control the atomization amount of droplets of different sizes and how to control the spray timing are also worth discussing. In order to solve the problem of how the size of droplets affects crop growth in fog culture, a test bench is designed to produce various droplets, which are mainly produced by ultrasonic atomizer and pressure-type spray head. The test of fog culture was also done. For foggy crops, light intensity, temperature, humidity, time and other factors will directly affect the growth of crops, in order to detect and control the environmental parameters of fog culture, In this paper, an intelligent control system based on STC15 series single chip microcomputer test bench for fog culture is designed. The fog control system detects the environmental parameters (temperature, light intensity, temperature) of the cultivation room through controller A, and transmits the data with controller B through the wireless module. Then, according to the collected information, the controller A and the controller B are adjusted accordingly, which makes it an intelligent control system with perfect functions such as data acquisition, control, data transmission and so on. Considering the time, temperature, humidity, light intensity and other factors in the root environment of foggy crops, and the interaction between them, an effective control method can be obtained. In view of the dynamic change of illumination in the environment of foggy crops, a method of fitting and controlling ultrasonic atomizer and pressure-type sprinkler is proposed by combining external weather and time factors, which is divided into different light intensity grades and time periods. In this way, the atomization intensity and atomization time of ultrasonic atomizer and pressure nozzle can be controlled. In view of the temperature and humidity environment of the root system of foggy cultivation, this paper proposes the coupling control of temperature and humidity. Firstly, the temperature and humidity of the fog incubator are collected in real time, and the temperature is fuzzed according to the fuzzy control idea. At the same time, the humidity after classification was coupled with the fuzzy temperature respectively, and then the temperature and humidity of the cultivation room were adjusted by fan, ultrasonic atomizer and pressure sprinkler, so that the crop root system was in a suitable environment. In view of how to control the atomization quantity, that is, to distinguish the atomization quantity under different conditions, this paper puts forward the principle of ultrasonic atomizing sheet grouping atomization, designs the ultrasonic atomizing chip grouping control circuit, and determines the grade of ultrasonic atomizing piece by the set control strategy. That is the number of ultrasonic atomizing tablets working at the same time.
【学位授予单位】:江苏大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP273;S317
【参考文献】
相关期刊论文 前10条
1 张猛;房俊龙;韩雨;;基于ZigBee和Internet的温室群环境远程监控系统设计[J];农业工程学报;2013年S1期
2 闻婧;程瑞锋;孟力力;韦金河;杨其长;张俊;;超声波雾化栽培装置的研制和应用效果[J];江西农业学报;2012年01期
3 万军;;国内外无土栽培技术现状及发展趋势[J];科技创新导报;2011年03期
4 王风云;赵一民;张晓艳;封文杰;;基于分段控制策略的温室智能测控系统设计[J];农业机械学报;2009年05期
5 肖会芹;周国雄;孙艳华;;基于单片机的超声波雾化器智能控制系统[J];微计算机信息;2009年02期
6 周国雄;朱俊杰;郑伟;;基于超声波雾化器的农作物温湿度智能控制系统[J];农机化研究;2008年10期
7 岳宇君;曾维鲁;;基于无线传感器网络的温度监测系统[J];三峡大学学报(自然科学版);2007年02期
8 徐伟忠;王利炳;詹喜法;章金栋;;一种新型栽培模式——气雾培的研究[J];广东农业科学;2006年07期
9 孙周平;刘涛;蔺姗姗;李天来;;雾培对番茄植株生长、产量和品质的影响[J];沈阳农业大学学报;2006年03期
10 王秀英;浅谈无土栽培技术[J];科技情报开发与经济;2004年07期
相关博士学位论文 前3条
1 王君;基于模糊控制策略的温室远程智能控制系统的研究[D];吉林大学;2015年
2 申宝营;夜间延时补光调控黄瓜幼苗形态研究[D];南京农业大学;2014年
3 陈海生;基于叶水势的樱桃番茄设施栽培逆境适应性研究[D];浙江大学;2003年
相关硕士学位论文 前10条
1 韩婧;办公环境中观赏植物的选择与配置应用研究[D];山东农业大学;2016年
2 张浙烽;工厂化蔬菜气雾栽培营养液供给自动监控关键技术及系统[D];中国计量学院;2015年
3 季延海;韭菜营养液栽培的关键技术[D];南京农业大学;2014年
4 邢坤;杏鲍菇栽培环境因子远程监测系统及模糊PID控制器的设计[D];宁夏大学;2014年
5 刘晶;基于超声雾化自动喷雾栽培实验系统[D];昆明理工大学;2013年
6 张楠;发泡保温温室监控系统设计[D];东北林业大学;2013年
7 叶青;基于模糊PID的硬质合金烧结炉温度控制系统开发及应用[D];中南大学;2009年
8 李广利;新型立体式无土栽培装置的研制及在生菜上栽培技术的研究[D];石河子大学;2009年
9 吴波;人工气候室智能控制器研究与开发[D];南京航空航天大学;2009年
10 王志娟;模糊控制中高级算法的设计和研究[D];山东大学;2008年
,本文编号:2143126
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2143126.html