当前位置:主页 > 科技论文 > 自动化论文 >

基于支持向量机的跌倒检测算法研究

发布时间:2018-08-21 11:28
【摘要】:实时跌倒检测能有效降低老人因跌倒导致的身心伤害,提高老人的独居能力和健康水平。为提高基于惯性传感器的跌倒检测系统的准确率,降低系统误报率和漏报率,提出了应用基于径向基函数的支持向量机算法实现跌倒判定。首先,应用佩戴在人体腰间的便携式跌倒检测系统完成数据的采集;然后,利用基于径向基函数(RBF)的SVM分类器标记疑似跌倒行为,并利用粒子群算法完成分类算法中惩罚因子C和RBF参数g的优化。结果表明,在区分跌倒与类似跌倒的日常活动时,基于SVM算法的跌倒检测系统准确率、误报率和漏报率分别为97.67%,4.0%和0.67%。与传统的阈值方法相比,跌倒检测性能有很大提高,从而加强了该系统在老人跌倒检测中的应用。
[Abstract]:Real-time fall detection can effectively reduce the physical and mental injury of the elderly caused by falls and improve the elderly's solitude and health level.To improve the accuracy of the fall detection system based on inertial sensors and reduce the false alarm rate and false alarm rate of the system,a support vector machine algorithm based on radial basis function is proposed to realize the fall determination. A portable fall detection system wearing in the waist is used to collect data. Then, a SVM classifier based on radial basis function (RBF) is used to mark the suspected fall behavior. Particle swarm optimization is used to optimize the penalty factor C and the RBF parameter g in the classification algorithm. The results show that the daily activities of distinguishing fall from similar fall can be optimized. The accuracy of the fall detection system based on SVM algorithm is 97.67%, 4.0% and 0.67% respectively. Compared with the traditional threshold method, the performance of the fall detection system is greatly improved, which strengthens the application of the system in the fall detection of the elderly.
【作者单位】: 上海交通大学电子信息与电气工程学院;
【基金】:上海市科学技术委员会基金资助项目(No.14441902800) 上海智能诊疗仪器工程技术研究中心基金资助项目(No.15DZ2252000)
【分类号】:TP18;TP212.9

【相似文献】

相关期刊论文 前10条

1 吴娟;范玉妹;王丽;;关于改进的支持向量机的研究[J];攀枝花学院学报;2006年05期

2 刘硕明;刘佳;杨海滨;;一种新的多类支持向量机算法[J];计算机应用;2008年S2期

3 尹传环;牟少敏;田盛丰;黄厚宽;;单类支持向量机的研究进展[J];计算机工程与应用;2012年12期

4 王云英;阎满富;;C-支持向量机及其改进[J];唐山师范学院学报;2012年05期

5 李逢焕;;试述不确定支持向量机应用分析及改进思路[J];中国证券期货;2012年12期

6 邵惠鹤;支持向量机理论及其应用[J];自动化博览;2003年S1期

7 曾嵘,蒋新华,刘建成;基于支持向量机的异常值检测的两种方法[J];信息技术;2004年05期

8 张凡,贺苏宁;模糊判决支持向量机在自动语种辨识中的研究[J];计算机工程与应用;2004年21期

9 魏玲,张文修;基于支持向量机集成的分类[J];计算机工程;2004年13期

10 沈翠华,邓乃扬,肖瑞彦;基于支持向量机的个人信用评估[J];计算机工程与应用;2004年23期

相关会议论文 前10条

1 余乐安;姚潇;;基于中心化支持向量机的信用风险评估模型[A];第六届(2011)中国管理学年会——商务智能分会场论文集[C];2011年

2 刘希玉;徐志敏;段会川;;基于支持向量机的创新分类器[A];山东省计算机学会2005年信息技术与信息化研讨会论文集(一)[C];2005年

3 史晓涛;刘建丽;骆玉荣;;一种抗噪音的支持向量机学习方法[A];全国第19届计算机技术与应用(CACIS)学术会议论文集(下册)[C];2008年

4 何琴淑;刘信恩;肖世富;;基于支持向量机的系统辨识方法研究及应用[A];中国力学大会——2013论文摘要集[C];2013年

5 刘骏;;基于支持向量机方法的衢州降雪模型[A];第五届长三角气象科技论坛论文集[C];2008年

6 王婷;胡秀珍;;基于组合向量的支持向量机方法预测膜蛋白类型[A];第十一次中国生物物理学术大会暨第九届全国会员代表大会摘要集[C];2009年

7 赵晶;高隽;张旭东;谢昭;;支持向量机综述[A];全国第十五届计算机科学与技术应用学术会议论文集[C];2003年

8 周星宇;王思元;;智能数学与支持向量机[A];2005年中国智能自动化会议论文集[C];2005年

9 颜根廷;马广富;朱良宽;宋斌;;一种鲁棒支持向量机算法[A];2006中国控制与决策学术年会论文集[C];2006年

10 侯澍e,

本文编号:2195574


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2195574.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户0be47***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com