当前位置:主页 > 科技论文 > 自动化论文 >

高频电液角振动测试台控制系统研究

发布时间:2018-08-21 20:38
【摘要】:本文所研究的高频电液角振动测试台用于陀螺仪在高频振动情况下,信号跟踪情况的检测。要求电液振动测试台在位置控制状态下实现高频正弦信号的高精度复现。其伺服控制控制系统的研究与电液振动台具有相通性,因此本文在基于电液振动台研究的基础上进行课题研究。液压控制系统易受各种非线性因素的影响,波形失真度较大,在高频率范围内工作相对困难。因此设计合理的控制系统克服非线性因素的不利影响,实现电液角振动测试台高频区工作是其研究的重要方向之一。本文首先根据液压动力机构及机械系统设计方案,搭建阀控摆动马达系统的数学模型,并对相关非线性问题做出分析。然后确定各个环节参数,根据极点配置原理设计了位置、速度、动压三状态反馈补偿控制器,并着重分析了动压反馈环节,利用根轨迹法确定了相关调试系数。通过伺服控制器改善了系统的零极点位置分布,提高了系统的稳定性和动态性能,利用Matlab/Simulink软件建模和仿真分析,得到了较好的仿真结果。在满足幅值控制精度的前提下,为进一步提高系统振动频率,在伺服控制器基础上加入PID型迭代学习控制策略。通过迭代方法以输出信号与给定目标的偏差修正不理想的控制信号,使得系统的跟踪性能得以提高。高质量的控制系统硬件设计是实现转台基本功能和高精度运动的基础。本文根据技术要求分析设计控制系统硬件部分及选型,设计主控制柜的电路连接原理图。在此基础上为避免马达叶片在高频率振动情况下失控撞到马达腔内壁造成损坏,设计马达防碰撞控制器,主要应用了互补滤波器原理。搭建试验样机,设计控制系统软件部分,主要包括上层控制界面的设计和下层RTX控制器的编写,并加入限位保护程序。实验验证三状态伺服控制器和PID迭代学习控制策略的有效性。
[Abstract]:The high frequency electro-hydraulic angular vibration test bench is used to detect the signal tracking of gyroscopes under high frequency vibration. The high precision reproduction of high frequency sinusoidal signal is required in the position control state of the electro-hydraulic vibration test table. The research of servo control system is similar to that of electro-hydraulic shaking table, so the research of this paper is based on the research of electro-hydraulic vibration table. The hydraulic control system is easy to be affected by various nonlinear factors, the waveform distortion is large, and it is relatively difficult to work in the high frequency range. Therefore, it is one of the important research directions to design a reasonable control system to overcome the adverse influence of nonlinear factors and to realize the work of the high frequency region of the electro-hydraulic angle vibration test table. Firstly, according to the design scheme of hydraulic power mechanism and mechanical system, the mathematical model of valve-controlled swing motor system is built, and the related nonlinear problems are analyzed. Then the parameters of each link are determined and a three-state feedback compensation controller of position velocity and dynamic pressure is designed according to the principle of pole assignment. The feedback link of dynamic pressure is analyzed emphatically and the relevant debugging coefficient is determined by using the root locus method. The servo controller is used to improve the position distribution of the zero and pole points of the system, and the stability and dynamic performance of the system are improved. The simulation results are obtained by using Matlab/Simulink software to model and simulate the system. On the premise of satisfying the precision of amplitude control, in order to further improve the vibration frequency of the system, the PID iterative learning control strategy is added to the servo controller. The tracking performance of the system can be improved by iterative method to correct the unsatisfactory control signal with the deviation between the output signal and the given target. The hardware design of high-quality control system is the basis of realizing the basic function and high-precision motion of turntable. According to the technical requirements, this paper analyzes and designs the hardware and selection of the control system, and designs the schematic diagram of the circuit connection of the main control cabinet. On this basis, in order to prevent the motor blade from getting out of control and colliding with the inner wall of the motor cavity under the condition of high frequency vibration, a motor anti-collision controller is designed, the principle of complementary filter is mainly applied. The test prototype is built and the software part of the control system is designed, which mainly includes the design of the upper control interface and the programming of the lower RTX controller, and the addition of the limit protection program. Experiments show the effectiveness of the three-state servo controller and the PID iterative learning control strategy.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP273

【参考文献】

相关期刊论文 前10条

1 宋世哲;邓志良;;基于PLC与电液伺服的编环机控制系统设计[J];电子设计工程;2016年21期

2 贾文昂;阮健;;电液疲劳试验系统的变谐振控制技术研究[J];振动与冲击;2016年07期

3 丰章俊;阮健;金丁灿;孔晨菁;刁慧君;;单轴高频电液振动台谐振现象的机理分析研究[J];液压气动与密封;2016年04期

4 李伟荣;胡红生;;高频电液振动台谐振特性研究[J];流体传动与控制;2016年02期

5 韩笑;刘艳芳;徐向阳;唐树晗;;Dynamic Simulation and Valve Structure Optimization of an Electro-Hydraulic Clutch Shift Control System in an Automatic Transmission[J];Journal of Donghua University(English Edition);2015年05期

6 ;Separate Control of High Frequency Electro-hydraulic Vibration Exciter[J];Chinese Journal of Mechanical Engineering;2011年02期

7 马海军;林勇强;冯屹朝;;系统辨识理论在建模中的应用[J];大众科技;2010年05期

8 袁立鹏;崔淑梅;靳蒙;;基于迭代学习的液压角振动台控制策略研究[J];宇航学报;2010年03期

9 张正强;李坤;王艳霞;;对z变换基本性质的进一步讨论[J];电子技术;2009年03期

10 朱亚辉;闵斌;余祖铸;;高频角振动台变负载的模型跟随自适应控制系统设计[J];上海航天;2008年05期

相关博士学位论文 前2条

1 李伟荣;高频单轴电液振动台振动特性研究[D];浙江工业大学;2013年

2 赵勇;液压振动台高精度正弦振动的控制策略研究[D];哈尔滨工业大学;2009年

相关硕士学位论文 前9条

1 张健;基于复合模糊控制的双缸电液位置同步系统研究[D];哈尔滨工业大学;2016年

2 罗慕成;高频响角振动台控制系统的研究[D];哈尔滨工业大学;2016年

3 田志杰;隧道掘进机刀具破岩试验台电液控制系统[D];西南交通大学;2015年

4 张西宁;迭代学习控制算法的改进与应用研究[D];江南大学;2013年

5 杨帅;电液三轴飞行转台控制系统硬件设计[D];哈尔滨工业大学;2012年

6 关晋凯;单轴液压角振动台振动控制研究[D];哈尔滨工业大学;2009年

7 史正强;液压角振动台信号处理方法的研究[D];哈尔滨工业大学;2008年

8 周惠蒙;基于迭代学习控制的电液伺服振动台控制系统的研究[D];湖南大学;2008年

9 靳蒙;三轴液压角振动台的控制研究[D];哈尔滨工业大学;2007年



本文编号:2196287

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2196287.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户c4913***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com