融合激光测距仪和惯导信息的移动机器人室内定位方法研究
[Abstract]:With the maturity of industrial robot technology, intelligent mobile robot has entered the stage of vigorous development, among which positioning technology is the key technology to solve the navigation of mobile robot and realize the full autonomous mobile robot. Compared with the mobile robot positioning in outdoor environment, the positioning accuracy in indoor environment is higher, and it is more difficult to achieve. Based on the two-wheel differential indoor mobile robot and laser rangefinder, micro-inertial measurement unit and encoder as the main sensors, this paper explores the indoor positioning scheme of the mobile robot in the known structured environment. Respectively from the theory and practice of the study. Firstly, the kinematics model of the two-wheel differential indoor mobile robot is established based on the mileage meter and the micro-inertial measurement unit, and an alignment algorithm for calculating the initial attitude of the robot is proposed to calculate the initial attitude of the robot when the indoor ground is uneven or tilted. Kalman filter is used to fuse the odometer and inertial navigation data, and the information of roll angle and pitch angle in the course of motion is introduced into the position updating algorithm, which is helpful to reduce the positioning error caused by the ground potholes, bumps or wheel skidding. Finally, based on the mileage meter, the micro inertial unit and the mileage / micro inertial combination, the correctness of the proposed position updating algorithm is verified. Secondly, aiming at the problem of over-segmentation and over-merging in data line segment segmentation of laser rangefinder, a line segment segmentation strategy based on Split-Merge framework is proposed, and Hough transform method is used to fit the arc feature. The features of lines and arcs in the environment are extracted successfully. Then, based on the extraction of environmental features, the initial localization scheme and dynamic localization scheme of indoor mobile robot are established. The initial location algorithm uses the complete line segment as the feature of map matching, and uses the micro-inertial device assisted laser rangefinder to locate. The simulation results of the optimized localization algorithm in dissimilar and symmetrical similar environments are satisfactory. The dynamic location scheme adopts the tight coupling method and uses the unscented Kalman filter as the combined positioning filter. The computation is reduced and the positioning accuracy is improved. The simulation results show the effectiveness of the combined positioning scheme. Finally, the indoor mobile robot experimental platform is built for the localization method studied in this paper, and the experimental research is carried out in two kinds of structured environments: dissimilar environment and symmetrical similar environment. The results show that the indoor mobile robot has achieved good localization effect in both environments, and the feature extraction algorithm can fit the line segment and arc feature of the environment correctly. With the addition of the initial alignment algorithm, the laser rangefinder can correctly identify the heading angle in the symmetrical similar environment, and the combined positioning scheme can correctly estimate the initial position and the trajectory of the robot in the course of motion.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP242
【参考文献】
相关期刊论文 前10条
1 张一栋;;用于自主移动机器人的导航定位技术分析[J];集成电路应用;2017年02期
2 杨旭东;黄玉柱;李继刚;李丽;李北斗;;变电站巡检机器人研究现状综述[J];山东电力技术;2015年01期
3 庞鸿锋;潘孟春;王伟;张琦;罗诗途;;基于高斯牛顿迭代算法的三轴磁强计校正[J];仪器仪表学报;2013年07期
4 梁明杰;闵华清;罗荣华;;基于图优化的同时定位与地图创建综述[J];机器人;2013年04期
5 肖鹏;栾贻青;郭锐;王明瑞;孙勇;;变电站智能巡检机器人激光导航系统研究[J];自动化与仪表;2012年05期
6 张辰贝西;黄志球;;自动导航车(AGV)发展综述[J];中国制造业信息化;2010年01期
7 王洪青;褚金奎;李荣华;李庆瀛;;并行超声波测距系统在移动机器人上的应用[J];传感器与微系统;2008年09期
8 程水英;;无味变换与无味卡尔曼滤波[J];计算机工程与应用;2008年24期
9 赵小川;罗庆生;韩宝玲;;机器人多传感器信息融合研究综述[J];传感器与微系统;2008年08期
10 陈中伟;肖华;吴功平;;高压巡线机器人电磁传感器导航方法[J];传感器与微系统;2006年09期
相关博士学位论文 前5条
1 于清晓;轮式餐厅服务机器人移动定位技术研究[D];上海交通大学;2013年
2 张勤;基于信息融合的移动机器人三维环境建模技术研究[D];北京邮电大学;2013年
3 韩震峰;面向煤矿井下探测的多节履带式机器人及其关键技术研究[D];哈尔滨工业大学;2012年
4 何昆鹏;MEMS惯性器件参数辨识及系统误差补偿技术[D];哈尔滨工程大学;2009年
5 王卫华;移动机器人定位技术研究[D];华中科技大学;2005年
相关硕士学位论文 前10条
1 李昀泽;基于激光雷达的室内机器人SLAM研究[D];华南理工大学;2016年
2 安学成;基于自然路标的室内机器人双目视觉绝对定位方法研究[D];吉林大学;2016年
3 徐强;基于无迹卡尔曼滤波的移动机器人室内定位算法研究[D];哈尔滨工业大学;2016年
4 汪洋;扫地机器人定位算法设计与嵌入式系统实现[D];中国科学技术大学;2016年
5 曾健;巡检机器人UWB无线定位算法和导航控制系统的研究[D];哈尔滨工业大学;2015年
6 刘博;基于激光雷达的室内外巡检移动机器人原型设计与实现[D];西南交通大学;2015年
7 董家志;基于UWB的室内定位与跟踪算法研究[D];电子科技大学;2015年
8 张振东;基于激光雷达的服务机器人室内动态导航方法研究[D];哈尔滨工业大学;2014年
9 张治国;基于单目视觉的定位系统研究[D];华中科技大学;2009年
10 付军;捷联惯导算法研究及系统仿真[D];哈尔滨工业大学;2007年
,本文编号:2196302
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2196302.html