纺丝生产线控制系统设计及智能控制算法研究
[Abstract]:With the improvement of people's quality of life, people's demand for healthy, environmentally friendly and comfortable textiles is becoming more and more urgent, subject to the constraints of output and quality. There is a contradiction between the domestic demand for high performance pure chitosan fiber and the low yield of low grade chitosan fiber. In view of this situation, this paper designs a set of spinning production line control system, which meets the basic requirements of production line control. In addition, the ant colony algorithm is successfully applied to the level adjustment of solidification bath level control system in the process of PID regulation. Firstly, on the basis of understanding the production process and control requirements of spinning production line, the whole structure of the system is designed, then the hardware selection of the system is selected and the basis of the selection is provided. The function of the commonly used hardware equipment is briefly introduced. Secondly, the monitoring system of spinning production line is built. The monitoring system designed in this paper includes two aspects, the bottom layer monitoring and remote monitoring. The bottom layer monitoring is MCGS touch screen monitoring by serial port between MCGS and Siemens PLC, and remote monitoring is remote monitoring and control through GPRS remote monitoring module. Thirdly, the traditional PID control and advanced control algorithm are introduced, and the ant colony algorithm is introduced and described systematically. The modeling of coagulation bath control system is carried out, and the idea of introducing ant colony algorithm to parameter setting of PID is put forward. Finally, through MATLAB simulation, the Z-N method, genetic algorithm, fuzzy adaptive algorithm and ant colony algorithm are simulated and compared. The theoretical analysis and experimental results show that the ant colony algorithm has a small overshoot in the PID parameter tuning of the system. The advantage of short setting time. The combined strategy of advanced control and conventional control realizes the coordinated operation of advanced algorithm and conventional control, and achieves the effect of improving control quality.
【学位授予单位】:青岛科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TQ340.64;TP273
【参考文献】
相关期刊论文 前10条
1 孙博;;基于PLC和组态软件的丙烯腈装置控制系统设计[J];化工自动化及仪表;2017年01期
2 高立龙;陈欣鹏;陈斌;马雪红;;基于ARM和GPRS的PLC远程监控系统设计[J];自动化与仪器仪表;2015年10期
3 Lin Zhang;Kaili Rao;Ruchuan Wang;;T-QoS-aware based parallel ant colony algorithm for services composition[J];Journal of Systems Engineering and Electronics;2015年05期
4 Dengpan Lai;Yizhe Wei;Liming Zou;Yongjing Xu;Hongwei Lu;;Wet spinning of PVA composite fibers with a large fraction of multi-walled carbon nanotubes[J];Progress in Natural Science:Materials International;2015年05期
5 魏星;李燕;;蚁群算法中参数优化及其仿真研究[J];制造业自动化;2015年10期
6 袁亚博;刘羿;吴斌;;改进蚁群算法求解最短路径问题[J];计算机工程与应用;2016年06期
7 宗德才;王康康;丁勇;;蚁群算法求解旅行商问题综述[J];计算机与数字工程;2014年11期
8 田兆硕;崔子浩;张丽婷;徐天赐;张延超;付石友;;Control and image processing for streak tube imaging lidar based on VB and MATLAB[J];Chinese Optics Letters;2014年06期
9 周家村;胡广敏;;纯壳聚糖纤维工业化环保纺丝技术与应用[J];纺织学报;2014年02期
10 王云刚;陈文燕;;基于MCGS和PLC的水位自动控制系统设计[J];测控技术;2014年01期
相关博士学位论文 前3条
1 梁霄;碳纤维纺丝过程的协同智能控制系统研究[D];东华大学;2012年
2 许伟;基于进化算法的复杂化工过程智能建模方法及其应用[D];华东理工大学;2011年
3 杨剑峰;蚁群算法及其应用研究[D];浙江大学;2007年
相关硕士学位论文 前5条
1 李胜男;基于PLC的工业丝纺丝控制系统设计[D];大连理工大学;2015年
2 乔静兵;先进PID控制算法在单元机组汽温控制系统中的应用研究[D];华北电力大学;2015年
3 鲁亚平;腈纶纺丝控制系统设计[D];合肥工业大学;2015年
4 高晓冬;碳纤维生产控制系统开发及优化[D];山东大学;2012年
5 李建;碳纤维原丝生产线控制系统开发[D];山东大学;2010年
,本文编号:2214345
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2214345.html