当前位置:主页 > 科技论文 > 自动化论文 >

基于结构支持向量机的目标跟踪算法研究

发布时间:2018-10-17 19:09
【摘要】:随着科技进步和社会发展,计算机视觉跟随人工智能的脚步走入人类视野。目标检测与跟踪课题,作为计算机视觉的关键问题,也是一个经典难题,近年来受到各个相关领域研究学者的关注,并且应对不同场景探索不同的检测与跟踪算法。在目标检测和目标跟踪两个领域中,关键的问题都在于如何有效描述目标、如何让计算机准确识别目标;不同点在于检测看重的是精确度,而跟踪在于实时性。应对这两种需求,本文结合支持向量机的优秀分类特性,研究了以下检测和跟踪系统。对于目标检测系统,在其训练阶段,首先在每个滑动窗口中分别计算HOG特征与LBPHF特征,然后将两者结合构成联合特征。接着利用线性支持向量机(SVM)训练分类器,其中本算法通过自举法(Bootstrap Method)不断更新优化分类器,以此获得最优判别模型。在训练阶段的基础上,将提取所得的联合特征输入上一阶段所获得的分类器中进行判别,最后采用非极大值抑制(NMS)的融合方法对重叠检测窗口进行融合,以此获得最终的检测结果。实验证明改进后的方法满足检出率高、计算复杂度低、抗行人肢体偏转干扰能力强等要求。对于目标跟踪系统,首先利用无模型的跟踪框架,运用改进的HOG-LBPHF对目标进行表观,并且结合目标间的结构信息,以此来训练SVM。其次采用被动主动感知器对分类平面进行优化。最后用最小生成树模型确定下一帧的所在位置。经过实验对比,本算法具有良好的跟踪性能。
[Abstract]:With the progress of science and technology and social development, computer vision follows the pace of artificial intelligence into human vision. Target detection and tracking, as a key problem of computer vision, is also a classical problem. In recent years, it has attracted the attention of researchers in various related fields, and different detection and tracking algorithms should be explored in different scenes. In the two fields of target detection and target tracking, the key problems are how to describe the target effectively and how to accurately identify the target by computer. In response to these two requirements, this paper studies the following detection and tracking systems combined with the excellent classification characteristics of support vector machines. In the training phase of the target detection system, the HOG feature and the LBPHF feature are calculated in each sliding window, and then the two features are combined to form a joint feature. Then the classifier is trained by linear support vector machine (SVM), where the optimal discriminant model is obtained by updating the optimal classifier by bootstrap (Bootstrap Method). On the basis of the training stage, the extracted joint features are input into the classifier obtained in the previous stage to discriminate. Finally, the overlapping detection window is fused using the fusion method of non-maximum suppression (NMS). Finally, the final test results are obtained. The experimental results show that the improved method meets the requirements of high detection rate, low computational complexity and strong anti-pedestrian limb deflection interference. For the target tracking system, we first use the model-free tracking framework, use the improved HOG-LBPHF to visualize the target, and combine the structure information between the targets to train the SVM.. Secondly, passive active perceptron is used to optimize the classification plane. Finally, the location of the next frame is determined by the minimum spanning tree model. The experimental results show that the algorithm has good tracking performance.
【学位授予单位】:哈尔滨理工大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP391.41;TP18

【参考文献】

相关期刊论文 前5条

1 黄凯奇;陈晓棠;康运锋;谭铁牛;;智能视频监控技术综述[J];计算机学报;2015年06期

2 孙凯;严潇然;谢荣平;;基于手势识别的智能家居人机交互系统设计[J];工业控制计算机;2014年04期

3 张春凤;宋加涛;王万良;;行人检测技术研究综述[J];电视技术;2014年03期

4 杨利平;辜小花;;用于人脸识别的相对梯度直方图特征描述[J];光学精密工程;2014年01期

5 孙锐;陈军;高隽;;基于显著性检测与HOG-NMF特征的快速行人检测方法[J];电子与信息学报;2013年08期



本文编号:2277675

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2277675.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户500f7***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com