基于位置—加速度反馈的广义二阶系统特征结构配置问题研究
[Abstract]:Compared with normal systems, singular systems are more general in form and wider in scope of application. Some achievements have been made in the study of singular systems, such as aerospace control, vibration control, The control problem of robot can be described by the control and design of the second order dynamic system. Therefore, the generalized second order dynamical system is chosen as the research object in this paper. With the demand of high precision in practical engineering, the innovation of traditional feature structure configuration is becoming a research hotspot. In the design of the controller of generalized second-order dynamical system, the closed-loop system can have the desired characteristics by optimizing the robust performance index. In this paper, the feedback control of generalized second-order system is carried out by the parameterized method of eigenstructure collocation, which is verified in mass-spring-damping system, and the response characteristic of the system is improved. The main problems discussed in this paper are as follows: 1) according to the characteristics of the singular system, the form of the control law is set in advance, that is, the position-acceleration feedback, and the feedback is used to eliminate the influence of the pulse. The parameterized form of the feedback controller is derived by combining the right co-prime decomposition. 2) in order to keep the original characteristics of the system disturbed as much as possible, the corresponding robust performance index is proposed to improve the robustness of the closed-loop system. In order to solve the above problems, the innovative work is as follows: first, based on position-acceleration feedback, the eigenstructure configuration problem of generalized second-order dynamical systems is solved. When the position-acceleration feedback control law is applied to the singular system, the dynamic order of the system can be changed and the impulse response of the singular system can be eliminated. For some types of systems, especially for large flexible structures, the dynamic response of the system measured by accelerometers is more accurate than that of position and velocity sensors. Secondly, the eigenvalues of the closed-loop system are allowed to be unknown, and the parameterization method of the eigenstructure is proposed based on the right co-prime decomposition and the elementary transformation of the matrix. The parametric expressions of eigenvector matrix and feedback gain controller for generalized second-order dynamical systems are derived. The degree of freedom provided by the parameterized expressions can be used in the robust design of the system. The algorithm has the advantages of simple and effective, low computational complexity and high accuracy. It can be used in the design of the controller of generalized second-order dynamical system more effectively. Thirdly, a new performance index for measuring the sensitivity of singular second order system is proposed to improve the robustness of the system. The eigenvalue of the closed-loop system is not sensitive to the parameter perturbation while the eigenvalue is in the specified region. Different from the past, the performance index also optimizes the position and acceleration feedback gain matrix to prevent the system from being substituted into the control input of the large value.
【学位授予单位】:东北电力大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP13
【参考文献】
相关期刊论文 前10条
1 仲志丹;郭苗苗;马利丹;赵斐;;油井抽油机位移加速度信号优化控制[J];计算机仿真;2016年08期
2 夏恩惠;;有限阶正则广义分布参数系统的扰动脉冲能观性[J];新型工业化;2016年07期
3 林旭;罗志才;;位移和加速度融合的自适应多速率Kalman滤波方法[J];地球物理学报;2016年05期
4 顾大可;张家琦;李春来;;矩阵二阶线性系统的鲁棒特征结构配置[J];控制工程;2016年03期
5 严侠;王珏;牛宝良;胡勇;;一种改善液压激振系统高频特性的位移加速度混合控制技术[J];机床与液压;2015年20期
6 李晨曦;俞孟蕻;杨金节;;应用加速度反馈的船舶动力定位系统研究[J];科学技术与工程;2014年08期
7 顾大可;段广仁;;矩阵二阶线性系统的鲁棒渐近跟踪[J];信息与控制;2013年02期
8 王国胜;武云丽;段广仁;;基于特征结构配置的二阶线性系统鲁棒容错控制设计[J];控制与决策;2013年03期
9 孔德杰;戴明;程志峰;沈宏海;盖竹秋;王国华;毛大鹏;;动基座光电稳定平台伺服系统中加速度反馈的实现[J];光学精密工程;2012年08期
10 安方;陈卫东;;时滞加速度反馈的振动主动控制方法研究[J];振动工程学报;2012年04期
相关博士学位论文 前5条
1 魏菊梅;几类广义系统的稳定性分析与控制[D];郑州大学;2013年
2 任俊超;导数项矩阵具有不确定性的广义系统导数反馈控制[D];东北大学;2011年
3 吴爱国;广义线性系统的脉冲消除与观测器设计[D];哈尔滨工业大学;2008年
4 李师广;线性系统参数特征结构配置与振动主动控制[D];上海交通大学;2007年
5 张彪;广义线性系统的参数化控制设计[D];哈尔滨工业大学;2007年
相关硕士学位论文 前7条
1 刘贺;广义线性系统的鲁棒输出反馈特征结构配置[D];哈尔滨工业大学;2016年
2 臧金鑫;基于位置—加速度反馈的二阶系统特征结构配置问题研究[D];东北电力大学;2016年
3 徐洋;广义系统基于动态补偿器的极点配置[D];哈尔滨工业大学;2014年
4 付冬;广义线性系统的渐近跟踪控制[D];哈尔滨工业大学;2013年
5 邢双云;广义系统的比例导数输出反馈控制[D];东北大学;2008年
6 徐文建;二阶系统的数字PID校正虚拟仪器的设计与实现[D];天津大学;2007年
7 彭路峰;广义系统的极点配置及输出反馈镇定[D];天津大学;2007年
,本文编号:2298308
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2298308.html