基于计算机博弈的五子棋算法研究
[Abstract]:Artificial intelligence is the hottest topic in recent years, a variety of artificial intelligence products emerge in endlessly. The machine game, which is a branch of it, is also valued. In recent years, the country has also attached great importance to this field, supporting the promotion of a lot of computer games. Machine game is to simulate human intelligence to solve practical problems. This is also the practical application value of the study. This design takes Gobang in chess as the research object, studies the existing research results, synthesizes the international frontier research trend, carries on the main research design to the search algorithm in the game process. The following is the main design work. Firstly, the computer game algorithm is studied and studied. Understand and study the development of Gobang, chess rules and rules. Frame design and chess game generation, chess display, time-timing interface design for the whole system. Secondly, according to the rules of Gobang, the game tree search algorithm proposed in this paper is implemented. Based on this, the algorithm is improved. The method of iterative deepening and window searching is introduced into Alpha-Beta pruning algorithm, which is much better than the initial program. Evaluation function also plays an important role in the whole system. Finally, in order to improve the chess skill of the system greatly, aiming at the problem that the search effect is not ideal, the method of using machine learning to replace the search algorithm is put forward. In this paper, we design a program environment in which we can play chess independently, which can be used to complete the game independently. And experimental results show that chess has a great improvement, and has a certain significance and use value.
【学位授予单位】:沈阳理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP18
【参考文献】
相关期刊论文 前10条
1 田渊栋;;阿法狗围棋系统的简要分析[J];自动化学报;2016年05期
2 郑南宁;;人工智能面临的挑战[J];自动化学报;2016年05期
3 龚怡宏;;人工智能是否终将超越人类智能——基于机器学习与人脑认知基本原理的探讨[J];人民论坛·学术前沿;2016年07期
4 严文蕃;李娜;;互联网时代的教学创新与深度学习——美国的经验与启示[J];远程教育杂志;2016年02期
5 李学俊;王小龙;吴蕾;刘慧婷;;六子棋中基于局部“路”扫描方式的博弈树生成算法[J];智能系统学报;2015年02期
6 刘建伟;刘媛;罗雄麟;;深度学习研究进展[J];计算机应用研究;2014年07期
7 廖景亮;陈冬强;;机器博弈中搜索算法的研究[J];福建电脑;2012年10期
8 程宇;雷小锋;;五子棋中Alpha-Beta搜索算法的研究与改进[J];计算机工程;2012年17期
9 张佳佳;;五子棋对战平台的设计与实现[J];电脑知识与技术;2012年22期
10 吕艳辉;宫瑞敏;;计算机博弈中估值算法与博弈训练的研究[J];计算机工程;2012年11期
相关硕士学位论文 前8条
1 张玉琪;基于静态评估的计算机围棋UCT算法改进研究[D];南昌航空大学;2015年
2 于雷;基于Google Speech-API的简单语音对话系统的实现[D];华南理工大学;2012年
3 姜文军;网络游戏中人工智能的研究及应用[D];上海交通大学;2013年
4 邢胜;基于数据库自学习的中国象棋研究[D];河北大学;2009年
5 赵红强;合作博弈解及其应用研究[D];吉林大学;2008年
6 韩江波;中国宏观经济现实的博弈研究[D];武汉科技大学;2008年
7 刘明慧;计算机博弈的估值方法研究[D];东北大学;2008年
8 王骐;博弈树搜索算法的研究及改进[D];浙江大学;2006年
,本文编号:2315818
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2315818.html