当前位置:主页 > 科技论文 > 自动化论文 >

考虑全过程优化的支持向量机预测方法

发布时间:2018-11-07 08:27
【摘要】:针对支持向量机(support vector machine,SVM)预测过程中影响因素选择、输入特征集优化、核函数选择及参数优化方面存在的问题,提出了一种全过程优化方法。首先使用频繁模式增长关联规则分析和模糊贝叶斯网络组合模型来解决影响因素选择中存在的主观性问题,然后使用在异常值处理和类内距离与类间距离方面进行改进的模糊C均值聚类算法优化输入特征集,减小支持向量机预测模型冗余度及训练样本集过修正度,通过比较各核函数的特点选择径向基核函数作为SVC的核函数,改进了粒子群优化算法中微粒速度和位置函数及惯性权重值算法,使用该方法优化SVM参数并建立预测模型。最后,通过案例运算和分析,证明该文方法具有更高的预测精度。
[Abstract]:Aiming at the problems of factors selection, input feature set optimization, kernel function selection and parameter optimization in the prediction process of support vector machine (support vector machine,SVM), a full process optimization method is proposed. Firstly, we use frequent pattern growth association rule analysis and fuzzy Bayesian network combination model to solve the subjective problem in the choice of influencing factors. Then the input feature set is optimized by using the improved fuzzy C-means clustering algorithm in the aspects of outlier processing and the distance between classes and intra-class distance. The redundancy of SVM prediction model and the over-correction of training sample set are reduced. By comparing the characteristics of each kernel function, the radial basis function is selected as the kernel function of SVC. The particle velocity and position function and inertial weight value algorithm in particle swarm optimization algorithm are improved. The SVM parameters are optimized and the prediction model is established by using this method. Finally, it is proved that the proposed method has higher prediction accuracy by case analysis.
【作者单位】: 装甲兵工程学院技术保障工程系;中国人民解放军68207部队;中国国防科技信息中心;
【基金】:武器装备预先研究基金 军队技术基础项目(A157167) 军队维修改革科研项目(2012SC49,2014BZ54)资助课题
【分类号】:TP18

【相似文献】

相关期刊论文 前10条

1 吴娟;范玉妹;王丽;;关于改进的支持向量机的研究[J];攀枝花学院学报;2006年05期

2 刘硕明;刘佳;杨海滨;;一种新的多类支持向量机算法[J];计算机应用;2008年S2期

3 尹传环;牟少敏;田盛丰;黄厚宽;;单类支持向量机的研究进展[J];计算机工程与应用;2012年12期

4 王云英;阎满富;;C-支持向量机及其改进[J];唐山师范学院学报;2012年05期

5 李逢焕;;试述不确定支持向量机应用分析及改进思路[J];中国证券期货;2012年12期

6 邵惠鹤;支持向量机理论及其应用[J];自动化博览;2003年S1期

7 曾嵘,蒋新华,刘建成;基于支持向量机的异常值检测的两种方法[J];信息技术;2004年05期

8 张凡,贺苏宁;模糊判决支持向量机在自动语种辨识中的研究[J];计算机工程与应用;2004年21期

9 魏玲,张文修;基于支持向量机集成的分类[J];计算机工程;2004年13期

10 沈翠华,邓乃扬,肖瑞彦;基于支持向量机的个人信用评估[J];计算机工程与应用;2004年23期

相关会议论文 前10条

1 余乐安;姚潇;;基于中心化支持向量机的信用风险评估模型[A];第六届(2011)中国管理学年会——商务智能分会场论文集[C];2011年

2 刘希玉;徐志敏;段会川;;基于支持向量机的创新分类器[A];山东省计算机学会2005年信息技术与信息化研讨会论文集(一)[C];2005年

3 史晓涛;刘建丽;骆玉荣;;一种抗噪音的支持向量机学习方法[A];全国第19届计算机技术与应用(CACIS)学术会议论文集(下册)[C];2008年

4 何琴淑;刘信恩;肖世富;;基于支持向量机的系统辨识方法研究及应用[A];中国力学大会——2013论文摘要集[C];2013年

5 刘骏;;基于支持向量机方法的衢州降雪模型[A];第五届长三角气象科技论坛论文集[C];2008年

6 王婷;胡秀珍;;基于组合向量的支持向量机方法预测膜蛋白类型[A];第十一次中国生物物理学术大会暨第九届全国会员代表大会摘要集[C];2009年

7 赵晶;高隽;张旭东;谢昭;;支持向量机综述[A];全国第十五届计算机科学与技术应用学术会议论文集[C];2003年

8 周星宇;王思元;;智能数学与支持向量机[A];2005年中国智能自动化会议论文集[C];2005年

9 颜根廷;马广富;朱良宽;宋斌;;一种鲁棒支持向量机算法[A];2006中国控制与决策学术年会论文集[C];2006年

10 侯澍e,

本文编号:2315781


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2315781.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户e8cbe***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com