单球自平衡移动机器人系统建模与自平衡控制研究
[Abstract]:The single-ball self-balancing mobile robot is a typical multi-variable, nonlinear, high-order, strongly coupled and static unstable system, which originates from the inverted pendulum model. The control theory of single-ball self-balancing mobile robot model is also widely used in robot and artificial intelligence control missile interception and docking control of space station rocket launch and attitude control in spacecraft flight. In this paper, a physical prototype is developed for the self-balancing control of a single-ball self-balancing mobile robot, and the mechanical modeling and control algorithm of the prototype is studied. The main research results are as follows: first of all, By studying the mechanical structure and motion characteristics of a single ball self-balancing mobile robot and referring to the design of "Rezero" robot, the physical prototype of a single ball self-balancing mobile robot is established. The mechanical structure of the physical prototype is designed to make the angle between the three omnidirectional axle lines and the lead vertical line smaller, so that the effective friction between the omnidirectional wheel and the driving sphere is greater, and the transfer efficiency of motion is also higher. In addition, the main controller of the whole control system of a single ball self-balancing mobile robot is a high-speed DSP (Digital signal processor) development board, which is made by TI Company of the United States, and is a model of TMS320FC28335. At the same time, a high-performance nine-axis attitude sensor developed by super-nuclear electron is used as the detection device, which makes the control system of the self-balancing mobile robot with single ball faster response speed, higher precision and higher efficiency. Secondly, on the basis of systematic analysis and research on the mechanical structure of single-ball self-balancing mobile robot, the model of single-ball self-balancing mobile robot is equivalent to the first-order inverted pendulum model and IASMP (Inverse Atlas Spherical Motion Platform) model with simple principle and mature theory. The accuracy and reliability of single ball self-balanced mobile robot system modeling are greatly improved. At the same time, using Euler-Lagrangian equation and Jacobian matrix, the dynamics and kinematics of single-sphere self-balancing mobile robot are modeled. The linearization model is obtained by linearizing the dynamic equation near the zero point of the system. Finally, the controllability, observability and stability of the linearization model are analyzed. Then, two control algorithms, PID and LQR, which are simple in structure and widely used, are designed for the self-balancing control (including position control and inclination control) of a single-ball self-balancing mobile robot. The PID control algorithm mainly controls the position of the single-ball self-balancing mobile robot, and the LQR control algorithm mainly controls the inclination of the single-ball self-balancing mobile robot. At the same time, the control effect of two control algorithms, PID and LQR, is simulated and analyzed by using MATLAB/SIMULINK software. Finally, according to the requirement of self-balancing control of single-ball self-balancing mobile robot, the control program of inclination angle, position control program and motion conversion program of single-ball self-balancing mobile robot are designed. At the same time, the software and hardware of the control system are debugged on line, and the control algorithm is written into the CCS (DSP programming software. The program code is burned into the DSP master controller and the experimental analysis of the single-ball self-balancing mobile robot prototype is carried out. The effectiveness of the proposed control algorithm is verified.
【学位授予单位】:江西理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP242
【参考文献】
相关期刊论文 前10条
1 庄未;刘成举;江汉;何淑通;;一种独轮车机器人的动力学建模及俯仰平衡控制[J];中国机械工程;2016年04期
2 贾中华;张少昆;;球上平衡移动机器人线性二次型最优控制[J];北京信息科技大学学报(自然科学版);2013年06期
3 王成;;基于Matlab/Simulink的DSP仿真调试研究[J];中国科技信息;2013年21期
4 孙汉旭;赵伟;张延恒;;新型变结构球形机器人运动分析[J];机械工程学报;2013年19期
5 庄未;黄渭;黄用华;刘夫云;黄美发;;独轮车机器人的欠驱动力学特性与平衡控制策略[J];机械设计;2013年06期
6 周爱国;洪佳;;单球驱动机器人Ballbot的建模与控制研究[J];机电一体化;2012年11期
7 李国兴;张晓东;董志国;王铁;;一种球形轮全向驱动平台的设计研究[J];机械传动;2012年06期
8 王启源;阮晓钢;;独轮自平衡机器人双闭环非线性PID控制[J];控制与决策;2012年04期
9 郭小强;赵刚;黄昆;;基于MATLAB/Simulink平台下TI C2000 DSP代码的自动生成[J];科学技术与工程;2011年13期
10 阮晓钢;胡敬敏;王启源;刘航;;一种独轮机器人的滑模控制[J];控制工程;2011年01期
相关博士学位论文 前2条
1 王启源;独轮自平衡机器人建模与控制研究[D];北京工业大学;2011年
2 郭磊;自行车机器人非线性系统中若干问题的研究[D];北京邮电大学;2007年
相关硕士学位论文 前10条
1 申晓峰;自平衡载人电动独轮车的控制系统研究[D];浙江大学;2015年
2 胡泽岩;独轮车机器人的动力学建模与控制[D];北京邮电大学;2015年
3 晏亭太;智能自适应PID/PD控制器设计及仿真研究[D];哈尔滨工业大学;2014年
4 李志超;两轮自平衡机器人LQR-模糊控制算法研究[D];哈尔滨理工大学;2014年
5 董文浩;单轮机器人的控制器设计与侧平衡实验验证[D];哈尔滨工业大学;2012年
6 王昱峰;一个飞轮倒立摆系统的建模与平衡控制的研究[D];北京工业大学;2011年
7 安然;倒立摆系统控制算法研究[D];河北科技大学;2011年
8 熊梅;独轮机器人姿态控制研究[D];哈尔滨工业大学;2010年
9 马传翔;单轮机器人运动机理及其控制方法的研究[D];哈尔滨工业大学;2010年
10 沈伟伟;基于DSP的轮式移动机器人控制系统设计[D];南京理工大学;2010年
,本文编号:2320367
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2320367.html