无线传感器网络的室内移动节点定位技术研究
[Abstract]:With the rapid development of science and technology, people's pursuit of quality of life continues to improve. Big data, cloud computing, Internet of things, artificial intelligence has become a hot research, intelligence, networking, wireless has entered into all aspects of people's lives. Nowadays, technology is developing along the direction of environmental protection, low energy consumption and wireless intelligence. Because of this trend, wireless sensor network (Wireless Sensor Networks,WSN) has become a hot technology in modern society. Due to the characteristics of large scale, self-organization, high robustness and low power consumption, WSN network is especially suitable for indoor positioning systems, especially for indoor mobile nodes. Because of the requirement of high performance and low power consumption, the research on the advancement of localization algorithm has become a hot issue. The main contents of this paper are as follows: because of the errors in the traditional localization algorithms such as traditional Voronoi diagrams, an improved localization algorithm based on Voronoi diagrams with multiple anchor nodes is proposed for this kind of problems. By introducing the Cayley-Menger determinant to limit the distance relation, the constraint equation about the ranging error is obtained, and the Lagrange multiplier method is used to solve the equation. At the same time, the modified distance information is applied to the multi-anchor node Voronoi map localization algorithm, so that the algorithm can be optimized. An improved least square fitting Monte Carlo (Least Squares Fitting Monte Carlo,LSFMCL) localization algorithm is proposed, which can overcome the shortcomings of the traditional Monte Carlo localization algorithm, which is caused by the low sampling efficiency of nodes. It uses the least square to fit the moving track of the node, at the same time, it makes a preliminary prediction of the node position, optimizes the sampling area and determines the sampling interval, and puts forward the concept of weight value and uses the weight information of the predicted node. Calculate the location of unknown nodes. The hardware platform of indoor mobile node positioning technology is designed and built, and then the upper computer monitoring system of indoor mobile node positioning system is developed by using VB.
【学位授予单位】:北京建筑大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP212.9;TN929.5
【参考文献】
相关期刊论文 前10条
1 赵芝璞;吴栋;王艳;纪志成;;基于平均跳距和位置优化的改进DV-Hop定位算法[J];系统仿真学报;2016年06期
2 荀平;徐博文;张先超;;无线传感器网络在历史建筑安全监测中的应用[J];自动化与仪器仪表;2016年05期
3 张浩华;赵小姝;刘玲;于欣禾;程立英;;基于WiFi技术的智能搜救机器人[J];智能计算机与应用;2016年02期
4 徐春华;王俊;;基于无线传感器网络的农业定位系统设计与实现[J];现代电子技术;2016年07期
5 陈建发;;关于拉格朗日乘数法的几何意义[J];高等数学研究;2016年02期
6 王明伟;陈立万;李洪兵;陈强;;基于ZigBee协议WSN在智能家居中的控制实现[J];电子科技;2016年03期
7 牟建伟;滕伟;;无线传感器网络的军事应用及发展趋势[J];科技展望;2016年07期
8 孙亚容;苏胜君;许金金;褚好迎;;基于无线传感器网络的无线医疗监护系统的设计与实现[J];数据通信;2015年03期
9 郑学理;付敬奇;;基于PDR和RSSI的室内定位算法研究[J];仪器仪表学报;2015年05期
10 张会新;陈德沅;彭晴晴;史磊;;一种改进的TDOA无线传感器网络节点定位算法[J];传感技术学报;2015年03期
相关博士学位论文 前2条
1 温龙飞;基于距离优化的移动传感器网络定位技术研究[D];北京理工大学;2015年
2 相卫华;无线传感器网络三维节点定位技术的研究[D];太原理工大学;2012年
相关硕士学位论文 前2条
1 周永;基于无线网络分析仪器在线升级的设计与实现[D];杭州电子科技大学;2011年
2 郑军成;3D-FSM·DDM数值模拟后处理子系统开发研究[D];山东科技大学;2005年
,本文编号:2323760
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2323760.html