3D打印精度及运动控制技术研究
[Abstract]:3D printing is a new material-increasing manufacturing technology, and high-precision printing may lead to a new industrial revolution. With the development of 3D printing technology, 3D printing technology has gradually entered the civil market, attracting the attention and interest of all circles at home and abroad. Taking (Fused deposition modeling,FDM as an example, the paper discusses the principle of 3D printer and analyzes the factors that affect the printing accuracy. From the point of view of motion control, the idea of motion subdivision control of 3D printer stepping motor is put forward, and the traditional PID, fuzzy PID neural network PID control algorithm is analyzed and compared. The main work is as follows: first, the material that affects the printing accuracy is analyzed. Technology, step motor motion control and other factors, and focus on the motion control of 3D printing accuracy; Secondly, the stepping motor is the executive component of the 3D printing system, which determines the precision of the motion control system. The controllability of two-phase hybrid stepping motor is analyzed by establishing a two-phase hybrid stepping motor model. In order to improve the control precision, the idea of step motor subdivision control is proposed. Thirdly, the fuzzy PID and neural network PID subdivision control algorithm of step motor is proposed, and the simulation results verify the proposed control algorithm. The simulation results show that compared with the traditional PID control algorithm, the proposed algorithm improves the response speed and robustness, and provides a theoretical basis for improving the accuracy of 3D printing.
【学位授予单位】:贵州师范大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP273;TP183;TP391.73
【参考文献】
相关期刊论文 前10条
1 夏爽;李丽宏;;基于PSO-RBF神经网络在温室温度预测中的应用[J];计算机工程与设计;2017年03期
2 申超群;杨静;;温室温度控制系统的RBF神经网络PID控制[J];控制工程;2017年02期
3 季晨雪;胡圣波;;3D打印机的定位模糊控制[J];贵州师范大学学报(自然科学版);2017年01期
4 窦立谦;田晓笛;;基于自适应RBF神经网络的可重复使用运载器再入段姿态控制[J];航天控制;2017年01期
5 周佳;卢少武;周凤星;;基于RBF神经网络的永磁同步电机速度PI-IP控制[J];组合机床与自动化加工技术;2017年01期
6 李书玲;刘蓉;刘红;;改进型RBF神经网络的多标签算法研究[J];计算机科学;2015年04期
7 谭秀腾;郭小定;李小龙;余亮;;基于ARM的桌面型3D打印机控制系统设计[J];应用科技;2014年05期
8 张颖;杨继全;;三维打印产业区域发展现状及思考[J];机械设计与制造工程;2014年06期
9 单文桃;陈小安;合烨;周明红;刘俊峰;;基于免疫遗传算法的模糊径向基函数神经网络在高速电主轴中的应用[J];机械工程学报;2013年23期
10 丛自龙;袁朝辉;杨芳;;基于模糊自适应PID控制的定位系统设计[J];机床与液压;2013年07期
相关硕士学位论文 前5条
1 安军涛;基于模糊神经网络的智能PID控制器研究与设计[D];武汉理工大学;2010年
2 张洪波;宽速自适应细分步进电机驱动器研究[D];西北工业大学;2007年
3 赵晗;步进电机集成式驱动器的设计[D];哈尔滨工业大学;2006年
4 毕绍新;步进电机驱动控制的应用研究[D];天津大学;2003年
5 张靖;步进电机细分驱动器的研究[D];河北农业大学;2003年
,本文编号:2329515
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2329515.html