当前位置:主页 > 科技论文 > 自动化论文 >

基于种群自适应调整的多目标差分进化算法

发布时间:2018-11-13 11:25
【摘要】:为提高已有多目标进化算法在求解复杂多目标优化问题上的收敛性和解集分布性,提出一种基于种群自适应调整的多目标差分进化算法。该算法设计一个种群扩增策略,它在决策空间生成一些新个体帮助搜索更优的非支配解;设计了一个种群收缩策略,它依据对非支配解集的贡献程度淘汰较差的个体以减少计算负荷,并预留一些空间给新的带有种群多样性的扰动个体;引入精英学习策略,防止算法陷入局部收敛。通过典型的多目标优化函数对算法进行测试验证,结果表明所提算法相对于其他算法具有明显的优势,其性能优越,能够在保证良好收敛性的同时,使获得的Pareto最优解集具有更均匀的分布性和更广的覆盖范围,尤其适合于高维复杂多目标优化问题的求解。
[Abstract]:In order to improve the convergence and solution set distribution of existing multi-objective evolutionary algorithms for solving complex multi-objective optimization problems, a multi-objective differential evolutionary algorithm based on population adaptive adjustment is proposed. The algorithm designs a population expansion strategy, which generates some new individuals in the decision space to help search for better non-dominated solutions. A population shrinking strategy is designed to eliminate individuals with poor contribution to the non-dominated solution set to reduce computational load and to reserve some space for new disturbed individuals with population diversity. The elite learning strategy is introduced to prevent the algorithm from falling into local convergence. The algorithm is tested and verified by typical multi-objective optimization function. The results show that the proposed algorithm has obvious advantages over other algorithms, and its performance is superior, and it can ensure good convergence at the same time. The obtained Pareto optimal solution set has more uniform distribution and wider coverage, which is especially suitable for solving high dimensional complex multi-objective optimization problems.
【作者单位】: 东华大学管理学院;
【基金】:国家自然科学基金资助项目(70971020) 上海市自然科学基金资助项目(15ZR1401600)
【分类号】:TP18

【相似文献】

相关期刊论文 前10条

1 吴燕玲;卢建刚;孙优贤;;基于免疫原理的差分进化[J];控制与决策;2007年11期

2 杨启文;蔡亮;薛云灿;;差分进化算法综述[J];模式识别与人工智能;2008年04期

3 许小健;黄小平;钱德玲;;自适应加速差分进化算法[J];复杂系统与复杂性科学;2008年01期

4 宁桂英;周永权;;基于优进策略的新差分进化算法动力学模型参数的估计[J];计算机与应用化学;2008年05期

5 谭跃;谭冠政;涂立;;一种新的混沌差分进化算法[J];计算机工程;2009年11期

6 王培崇;钱旭;王月;虎晓红;;差分进化计算研究综述[J];计算机工程与应用;2009年28期

7 肖术骏;朱学峰;;一种改进的快速高效的差分进化算法[J];合肥工业大学学报(自然科学版);2009年11期

8 周萧;王万良;徐新黎;;解决作业车间调度问题的混合差分进化算法[J];轻工机械;2010年05期

9 王艳宜;;改进差分进化算法及其应用[J];机械设计与研究;2010年05期

10 张照生;罗健旭;;基于差分进化算法的模糊神经网络控制器[J];计算机与应用化学;2011年12期

相关会议论文 前10条

1 陆丝馨;肖健梅;王锡淮;;基于改进差分进化算法的舰船电网重构[A];第二十九届中国控制会议论文集[C];2010年

2 楼洋;李均利;陈刚;;基于个体排序的差分进化算法[A];'2010系统仿真技术及其应用学术会议论文集[C];2010年

3 张倩;李海港;;多目标问题的差分进化算法研究[A];2009年中国智能自动化会议论文集(第一分册)[C];2009年

4 裴振奎;刘真;赵艳丽;;差分进化算法在多目标路径规划中的应用[A];中国运筹学会模糊信息与模糊工程分会第五届学术年会论文集[C];2010年

5 刘国帅;杨侃;陈静;周景舒;周冉;郑姣;;差分进化算法在三峡电站厂内经济运行中的应用[A];中国水文科技新发展——2012中国水文学术讨论会论文集[C];2012年

6 刘潇;桂卫华;王雅琳;王晓丽;阳春华;;一种改进的多目标差分进化算法研究[A];中国自动化学会中南六省(区)2010年第28届年会·论文集[C];2010年

7 赵娟;蔡涛;邓方;杨红伟;;基于改进差分进化算法的脉冲控制方法[A];中国自动化学会控制理论专业委员会B卷[C];2011年

8 袁沈坚;顾幸生;;基于差分进化的膜计算优化算法[A];上海市化学化工学会2010年度学术年会论文集(自动化专题)[C];2010年

9 姜立强;郭铮;刘光斌;;差分进化算法缩放因子取值策略研究[A];2007'仪表,自动化及先进集成技术大会论文集(二)[C];2007年

10 倪惠康;杜文莉;钱锋;;基于改进差分进化算法的PID参数优[A];2009年中国智能自动化会议论文集(第一分册)[C];2009年

相关博士学位论文 前10条

1 孙浩;差分进化多目标优化算法及其在铝热连轧轧制规程中应用[D];燕山大学;2015年

2 陈盈果;面向任务的快速响应空间卫星部署优化设计方法研究[D];国防科学技术大学;2014年

3 谢宇;差分进化的若干问题及其应用研究[D];南京理工大学;2015年

4 董峗;差分进化算法研究及在港口物流调度中的应用[D];东北大学;2015年

5 葛延峰;有关智能优化算法及应用的若干问题研究[D];东北大学;2013年

6 贾东立;改进的差分进化算法及其在通信信号处理中的应用研究[D];上海大学;2011年

7 刘荣辉;多阶段自适应差分进化算法及应用研究[D];东华大学;2012年

8 郭鹏;差分进化算法改进研究[D];天津大学;2012年

9 王旭;改进差分进化算法及其在可逆逻辑综合中的应用[D];东华大学;2013年

10 董明刚;基于差分进化的优化算法及应用研究[D];浙江大学;2012年

相关硕士学位论文 前10条

1 高静;量子差分进化算法在油田开发中的应用研究[D];浙江大学;2015年

2 万婧;基于离散微粒群算法和混合差分进化算法的复杂生产调度问题求解[D];昆明理工大学;2015年

3 张转;基于差分进化算法的混凝土德拜模型的研究[D];长安大学;2015年

4 江华;差分进化算法的改进及其在K-means聚类算法中的应用[D];华中师范大学;2015年

5 周志刚;基于差分进化算法的信用风险度量模型研究[D];华中师范大学;2015年

6 任甜甜;差分进化算法在反演问题中的研究与应用[D];新疆大学;2015年

7 杨洋;基于差分进化的模糊C-均值聚类算法研究[D];电子科技大学;2015年

8 王丹;基于辅助函数的自适应差分进化算法研究[D];西安电子科技大学;2014年

9 刘家华;基于进化计算的轧制生产过程操作优化算法与系统开发[D];东北大学;2013年

10 王旦平;圆形对称振子阵列天线基于差分进化算法的综合[D];西安电子科技大学;2014年



本文编号:2328970

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2328970.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户e3649***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com