基于MEMS传感器的哑铃动作识别与能耗计算系统的设计与实现
[Abstract]:In order to meet the demand of dumbbell exercise at home, a dumbbell action recognition and energy consumption calculation system based on MEMS sensor is designed and implemented in this paper. Instead of exercising in the gym, the trainer can give a detailed exercise plan and correct the wrong action in real time. The user needs to master the muscle part of the exercise and the effect of the exercise in the home. The system collects the dumbbell movement of the user, identifies and analyzes the user's action type, energy consumption, exercise position and so on, so as to help the user to carry on the correct and effective dumbbell exercise. The system is divided into two parts: the action acquisition end and the computer terminal, and the communication between the action acquisition end and the computer end through Bluetooth. In order to collect the user's motion data, this paper first designs and implements the action acquisition terminal. The action acquisition end is mainly responsible for collecting motion data, including three-dimensional acceleration, three-dimensional angular velocity and so on, and carries out attitude calculation to calculate the Euler angle. It provides data for the computer to identify dumbbell movement and calculate dumbbell motion energy consumption. The motion acquisition terminal is composed of a motion acquisition circuit and a general weight adjustable dumbbell. The motion acquisition circuit is fixed on the ordinary dumbbell to achieve the purpose of collecting dumbbell motion data. Motion acquisition circuit consists of microprocessor, motion sensor, Bluetooth RF, I / O (I / O), power supply and so on. The microprocessor adopts the STM32F103C8T6 microcontroller with ARM Cortex-M3 as the core, the motion sensor adopts the MPU-9250 nine-axis motion tracking sensor, and the DMP module of the sensor can be used to calculate the attitude and provide the attitude data. Bluetooth RF transceiver adopts USR-BLE101 module, which supports BLE 4.1 protocol, I / O part includes keystroke, LED, and extended interface, etc. CR2032 button battery is used for power supply, which can save energy effectively through flexible dormancy and wake-up mechanism of processor and sensor. The motion data is packed in the predefined frame format and sent to the computer through BLE 4.1. The computer is mainly responsible for dumbbell action recognition and energy consumption calculation, including motion recognition method and energy consumption calculation method. In this paper, an action recognition method based on MEMS sensor is proposed. After reading the real time sampling data of 3D acceleration and 3D angular velocity, the data are processed by acceleration decomposition, filtering, period determination, normalization and so on. By analyzing the similarity with the data in the feature database and comparing the Pearson correlation coefficient between the actions to be tested and each group of actions in the database, the recognition of specific actions can be realized, and the repetitive actions can be counted. In this paper, six kinds of common dumbbell actions are tested, and the results show that the method is effective, and the average recognition rate is 94. The energy consumption calculation method is used to analyze the muscle parts of each dumbbell movement. At the same time, the energy (heat) consumption of each action is analyzed by calculating the kinetic energy of the dumbbell. Furthermore, the energy consumed by each muscle part and the total energy consumed by the user are counted. Through the dumbbell action recognition and energy consumption calculation system, the user can accurately grasp the exercise of their muscles, thus more scientific dumbbell exercise.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP212.9
【相似文献】
相关期刊论文 前10条
1 陈勤;范树新;张维波;;MEMS传感器的标准化现状与发展对策[J];传感器与微系统;2007年08期
2 樊建勋;;MEMS传感器及其在航空领域的应用[J];电子技术与软件工程;2014年04期
3 殷春燕;;室内导航带来智能手机新商机,MEMS传感器加速系统融合[J];集成电路应用;2012年08期
4 程海林;黄昌正;郝志峰;张娜;王磊;陈曦;周智恒;;基于弯曲与组合MEMS传感器的数据手套设计[J];广东科技;2013年06期
5 李铮;;MEMS传感器在车辆运动状态监测系统中的应用[J];计算机光盘软件与应用;2012年22期
6 桂志鹏;黄德昌;肖湘;谢晓峰;;基于MEMS传感器的军民两用戒指型无线麦克风系统的设计[J];中国科技信息;2012年07期
7 江兴;;2012年MEMS传感器和执行器市场将达97亿美元[J];半导体信息;2008年05期
8 王铁流;沈京;张强永;王瑛;;基于MEMS传感器的输电杆塔倾摆安全监测技术[J];测控技术;2013年05期
9 欧毅;白宏磊;石莎莉;焦斌斌;李超波;黄钦文;董立军;景玉鹏;陈大鹏;叶甜春;申功;;应用于流动控制的MEMS传感器和执行器[J];电子工业专用设备;2006年01期
10 许晓青;王宝光;孙春生;;基于MEMS传感器技术的微型化、数字式倾角仪的研究[J];电子测量技术;2008年02期
相关会议论文 前2条
1 宋渤;徐龙起;张桂铭;赵立波;王晓坡;刘志刚;;MEMS传感器测量正庚烷密度和黏度的实验研究[A];高等学校工程热物理第十九届全国学术会议论文集[C];2013年
2 杜勇;庹先国;李怀良;朱丽丽;刘勇;;基于MEMS传感器的数字高灵敏度VSP测井技术研究[A];中国地球物理学会第二十七届年会论文集[C];2011年
相关重要报纸文章 前1条
1 ADI微机械产品线高级应用工程师 赵延辉;MEMS传感器走向低功耗、集成化[N];中国电子报;2012年
相关硕士学位论文 前10条
1 马瑞涛;基于MEMS传感器的自适应振动监测系统的设计[D];长安大学;2015年
2 庄猛;MEMS传感器三维引线键合系统研制[D];苏州大学;2016年
3 仇立杰;基于MEMS传感器的手势识别算法研究[D];北京化工大学;2016年
4 刘震;基于MEMS传感器与Zigbee网络的人体手臂运动状态测量和识别方法研究[D];西南交通大学;2017年
5 谭培培;柔性透明近距离压力双功能MEMS传感器研究[D];北方工业大学;2017年
6 李丰;压电式MEMS传感器的稳健设计研究[D];北方工业大学;2017年
7 冯春鹏;多铁纳米MEMS传感器性能测试系统设计[D];北方工业大学;2017年
8 牛大伟;基于MEMS传感器的挖掘机姿态检测系统的研究[D];华侨大学;2015年
9 秦溥;基于MEMS传感器的虚拟现实射击识别设备与系统[D];山东大学;2017年
10 王凯;基于MEMS传感器的哑铃动作识别与能耗计算系统的设计与实现[D];吉林大学;2017年
,本文编号:2352169
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2352169.html