永磁同步电机节能控制系统研究
[Abstract]:Energy shortage is a hot issue in society. With the development of technology, the electricity consumption of the whole society is rising. The electric power consumption in China accounts for more than half of the total electricity consumption in China, and the efficiency of motor control system is generally low. It has great economic benefit and realistic demand to study the energy saving optimization operation of motor control system. Permanent magnet synchronous motor (PMSM) has the advantages of high efficiency and good reliability. It can meet the market demand of high efficiency and energy saving of motion control system. It has become the first choice of energy-saving control system. Permanent magnet synchronous motor (PMSM) is a nonlinear mechanical / electrical energy conversion system. There are many disturbances in the control system such as current coupling, flux saturation, parameter change and so on. These disturbances directly affect the performance of PMSM control system. The research on improving the performance and robustness of PMSM energy-saving control system is of great theoretical and practical significance. The parameters of permanent magnet synchronous motor (PMSM) are estimated on line. The on-line estimation of motor parameters can be divided into two parts: dynamic model linearization and identification algorithm. Firstly, the linearization process of PMSM dynamic model is improved, and the PMSM dynamic linear model with higher precision is obtained by using Pad linearization method. Then, multi-innovation recursive least square algorithm is introduced to estimate the parameters of PMSM on line, and fuzzy control algorithm is used to improve the selection strategy of forgetting factor in the on-line parameter estimation algorithm. It can improve the precision, speed and stability of PMSM. Loss model method and input power search method are two common energy saving control strategies for permanent magnet synchronous motor (PMSM). The loss model is a mathematical model based on the parameters of the motor to control the loss (electrical loss). The controller calculates the current reference value according to the loss model. The precision and robustness of the loss model are affected by the motor parameters. Therefore, the on-line parameter estimation of PMSM is helpful to improve the performance and robustness of the loss model controller. In this paper, the on-line parameter estimation algorithm is used to estimate the motor parameters in real time, and the parameter estimation value is brought into the loss model controller to obtain more accurate current reference value. On-line parameter estimation reduces the disturbance of motor parameters to the loss model, enhances the robustness of the control algorithm, and realizes the more efficient operation of the motor control system. Input power search is a local optimization algorithm. By detecting the DC side power of the inverter and controlling the input voltage of the motor, the search method finally finds the stable working point with the lowest input power of the motor. The input power search control strategy has some disadvantages, such as slow convergence speed and high torque fluctuation. In this paper, the minimum operating point of input power is calculated by using the motor loss model, which greatly reduces the initial search range of the search method and improves the convergence speed of the algorithm. At last, the control system of PMSM based on loss model is built on the dSPACE hardware-in-the-loop experimental platform. Experimental results show that the online parameter estimation algorithm can improve the efficiency and robustness of the energy saving strategy of the loss model.
【学位授予单位】:江南大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP273;TM341
【参考文献】
相关期刊论文 前10条
1 朱永彬;林珍;;电动汽车用永磁同步电动机弱磁研究综述[J];电气技术;2015年10期
2 李红梅;陈涛;;永磁同步电机参数辨识研究综述[J];电子测量与仪器学报;2015年05期
3 罗德荣;邹勇波;黄守道;成双银;孔永强;;对转永磁同步电机直接转矩控制方法[J];控制理论与应用;2015年02期
4 黄劭刚;洪剑锋;赵鲁;;一种基于变频器驱动的异步电机参数辨识方法[J];电力电子技术;2015年01期
5 王志鹏;王梦琪;丁树业;单薏;刘端增;于春雨;吕艳玲;;表贴式永磁同步电机温升敏感性因素分析[J];中国电机工程学报;2014年33期
6 孔小兵;刘向杰;;永磁同步电机高效非线性模型预测控制[J];自动化学报;2014年09期
7 张永博;易伯瑜;康龙云;;电动车用永磁电机新型观测器设计[J];吉林大学学报(工学版);2015年05期
8 黄智慧;段雄英;邹积岩;万慧明;;基于改进RLS算法的故障电流参数估计[J];中国电机工程学报;2014年15期
9 雷金莉;窦满峰;;基于损耗分析的高空电机效率模糊自适应优化控制[J];中南大学学报(自然科学版);2014年03期
10 肖曦;许青松;王雅婷;史宇超;;基于遗传算法的内埋式永磁同步电机参数辨识方法[J];电工技术学报;2014年03期
相关博士学位论文 前2条
1 张抗抗;纯电动汽车能效优化方法研究[D];清华大学;2014年
2 盛义发;城轨牵引内置式永磁同步电机驱动系统效率优化控制方法研究[D];中南大学;2010年
相关硕士学位论文 前9条
1 徐淑芬;电动汽车用永磁同步电机效率优化策略研究[D];长安大学;2014年
2 曹杨;永磁同步电机参数辨识研究[D];山东大学;2014年
3 吴帆;风电系统感应发电机效率优化研究[D];上海交通大学;2014年
4 王贺超;表贴式永磁同步电机弱磁区电流谐波抑制[D];天津大学;2014年
5 刘金凤;电动汽车驱动系统效率优化控制研究[D];哈尔滨工业大学;2013年
6 吴芳;内置式永磁同步电机最大转矩电流比控制策略研究[D];哈尔滨工业大学;2013年
7 汪玄;电动汽车用异步电机节能控制方法的研究[D];沈阳工业大学;2013年
8 魏中文;表贴式永磁同步电机参数在线辨识的研究[D];重庆大学;2012年
9 符荣;基于有限元分析的稀土永磁同步电动机研究[D];西北工业大学;2007年
,本文编号:2375396
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2375396.html