应用混沌蚁群理论的机械臂控制算法研究
[Abstract]:Mechanical arm is an important tool for modern industry to replace people to do high risk and flow work. With the extensive application of industrial mechanical arm, the labor productivity has been improved effectively, and the cost has been reduced. It is the symbol of a country's industrialization level. Therefore, the research and application of high performance manipulator motion control system is of great significance and is favored by experts and scholars. In this paper, the inverse kinematics problem of manipulator is studied by using swarm intelligence bionic algorithm. First of all, the inverse kinematics equation is transformed into the problem of finding the maximum value of the n-variable function, that is, the three-dimensional function is simplified into a two-dimensional plane function, and then the corresponding relation between the objective function F and the motion path of the manipulator is used. The optimal path planning problem is transformed into the problem of finding the maximum value of the objective function F. On this basis, a path optimization method based on chaotic ant colony algorithm is proposed. In the concrete application of the combination of basic ant colony algorithm and chaos theory, aiming at the problem that the pheromone content in every path is the same at the initial searching stage of the basic ant colony algorithm, so the convergence speed is slow. The chaos initialization of chaos theory is introduced into the basic ant colony algorithm, which puts different pheromones on different paths, thus speeding up the convergence speed of the basic ant colony algorithm, and at the same time introducing the chaos perturbation factor. The updating of pheromone is adjusted in real time to effectively avoid the problem that the basic ant colony algorithm is prone to local optimization in the search process. Therefore, chaotic ant colony algorithm not only improves the convergence speed, accuracy and enlightenment, but also reduces the time complexity of the basic ant colony algorithm and solves the optimal path selection problem better. Finally, taking the SR165 manipulator as an example, a simulation experiment platform based on MATLAB Robotics Toolbox is established, and the feasibility and superiority of chaotic ant colony algorithm are proved by comparing the simulation results with the basic ant colony algorithm.
【学位授予单位】:辽宁科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP18;TP241
【参考文献】
相关期刊论文 前10条
1 陶洪峰;董晓齐;杨慧中;;参考轨迹更新的点到点迭代学习控制算法优化及应用[J];控制理论与应用;2016年09期
2 白云飞;丛明;杨小磊;刘冬;;基于6参数模型的6R串联机器人运动学参数辨识[J];机器人;2015年04期
3 吴昊;;基于勒贝格测度与wigner变换的混沌判定方法[J];山东工业技术;2013年10期
4 曲大鹏;王兴伟;黄敏;;移动对等网络中的感知蚁群路由算法[J];计算机学报;2013年07期
5 张文超;谭思超;高璞珍;;基于Lyapunov指数的摇摆条件下自然循环流动不稳定性混沌预测[J];物理学报;2013年06期
6 林妍;吴瑾;樊锁海;;图着色和标号问题的蚁群优化算法[J];数学的实践与认识;2012年17期
7 温瑞;李大伟;栾孝丰;;基于蚁群算法的机器人路径规划[J];计算机与数字工程;2012年05期
8 刘洋;章卫国;李广文;;基于改进PRM算法的路径规划研究[J];计算机应用研究;2012年01期
9 敬明;邓卫;;结合概率搜索定界的入度统计最短路径算法[J];交通运输系统工程与信息;2011年06期
10 王雪松;潘杰;程玉虎;;基于知识迁移的Ant-Q算法[J];电子学报;2011年10期
相关博士学位论文 前1条
1 陈天石;演化算法的计算复杂性研究[D];中国科学技术大学;2010年
相关硕士学位论文 前2条
1 吴强;基于工作空间离散化的重载多足步行机器人控制技术研究[D];吉林大学;2015年
2 杨学峰;蚁群算法求解TSP问题的研究[D];吉林大学;2010年
,本文编号:2378186
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2378186.html