先验驱动的多目标人工雨滴算法及其应用研究
[Abstract]:Evolutionary algorithms are a class of intelligent search and optimization techniques inspired by natural phenomena or laws. Because of its high performance and great application potential, evolutionary algorithms have attracted much attention from researchers at home and abroad in the past half century. In view of this, this paper aims to study the solution of complex continuous optimization problems based on the recently proposed artificial raindrop algorithm. The main work is as follows: (1) in order to further understand the operation mechanism and calculation effect of artificial raindrop algorithm, it is proved that the artificial raindrop algorithm converges to a satisfactory population with probability 1 under the condition that the variables are not related to each other. Secondly, the optimization performance is compared with the three evolutionary algorithms on the CEC2005 test platform. Experimental results show that artificial raindrop algorithm is effective in solving complex continuous optimization problems. (2) when artificial raindrop algorithm is used to solve multi-objective optimization problem, How to fuse the characteristics of the problem in the process of algorithm design is an important aspect to improve the computational efficiency. Therefore, a priori driven multi-objective artificial raindrop algorithm is proposed. Firstly, a multi-objective artificial raindrop algorithm is proposed by combining the non-dominated sorting framework with the artificial raindrop algorithm. Secondly, in order to speed up the convergence of the multi-objective artificial raindrop algorithm, by integrating the priori knowledge of multi-objective optimization, the center of search space and the binomial crossover operator, the population is guided to the ideal Pareto front quickly. Finally, in order to maintain the effectiveness of population selection and the diversity of non-dominated solutions, a pruning method based on the nearest crowding distance is proposed. In order to verify the optimization performance of the algorithm, 12 multi-objective test functions are selected for verification, and compared with the other four multi-objective optimization algorithms. The results show that the proposed algorithm can jump out of the Pareto local optimal solution faster than other optimization algorithms, and obtain better uniformity of the Pareto frontier. (3) for reactive power optimization problems in power systems, firstly, A multi-objective optimization model with voltage deviation and active power loss as targets is established. Secondly, the multi-objective artificial raindrop algorithm is used to solve the problem, and the coding and flow of the algorithm are described in detail. Finally, the IEEE-30 node system is tested, the results before and after optimization are compared, and the results are compared with the optimized results in Liu Jia's literature. The experimental results show that the proposed algorithm realizes the economic operation of power system at the same time. The voltage stability of the power network is improved.
【学位授予单位】:西安理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP18
【参考文献】
相关期刊论文 前8条
1 程宪宝;;基于二项式交叉改进的人工蜂群算法[J];山东理工大学学报(自然科学版);2016年05期
2 宣冬梅;王菊韵;于华;赵佳;;深度学习中先验知识的应用[J];计算机工程与设计;2015年11期
3 朱君;蔡延光;汤雅连;杨军;;多目标优化问题的研究[J];东莞理工学院学报;2014年03期
4 张洪波;杨琳;刘金龙;杨德龙;张晨;;基于混沌免疫接种粒子群算法的电力系统多目标无功优化[J];黑龙江电力;2011年01期
5 肖斌;薛丽敏;李照顺;;对人工智能发展新方向的思考[J];信息技术;2009年12期
6 刘佳;李丹;高立群;宋立新;;多目标无功优化的向量评价自适应粒子群算法[J];中国电机工程学报;2008年31期
7 谢涛,陈火旺,康立山;多目标优化的演化算法[J];计算机学报;2003年08期
8 谢涛,陈火旺;多目标优化与决策问题的演化算法[J];中国工程科学;2002年02期
相关会议论文 前2条
1 陈家照;罗寅生;;群智能优化算法研究[A];第三届中国智能计算大会论文集[C];2009年
2 彭锦;;进化算法综述[A];中国运筹学会第六届学术交流会论文集(上卷)[C];2000年
相关博士学位论文 前2条
1 汪云云;结合先验知识的分类器设计研究[D];南京航空航天大学;2012年
2 张利彪;基于粒子群和微分进化的优化算法研究[D];吉林大学;2007年
相关硕士学位论文 前7条
1 李艳丽;基于多目标优化的粒子群算法研究及其应用[D];西南交通大学;2014年
2 勾磐杰;基于先验知识的轮胎标识识别方法研究[D];沈阳工业大学;2014年
3 张浪;进化动态多目标优化算法及其应用[D];西安电子科技大学;2014年
4 张强;基于改进遗传算法的电力系统多目标无功优化[D];西安理工大学;2009年
5 宋明曙;电力系统无功优化分析[D];山东大学;2008年
6 朱建才;多目标优化方法库的开发与应用研究[D];西北工业大学;2006年
7 陈(羽中)伟;基于先验知识的神经元网络建模与应用[D];浙江大学;2002年
,本文编号:2378209
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2378209.html