基于NSGA-Ⅱ算法的客车底架的离散拓扑优化
发布时间:2018-12-14 07:45
【摘要】:对电动大客车底架利用第二代非支配排序遗传算法(NSGA-Ⅱ)进行了拓扑优化,在保证所有梁单元最大应力不超过屈服强度的条件下,以整车扭转刚度和质量作为优化目标,最终得到底架拓扑后的帕累托前沿.对结果进行筛选,得到的拓扑方案扭转刚度与原模型接近,质量降低89kg,占原模型底架的6.4%,拓扑效果显著.
[Abstract]:The topology optimization of electric bus underframe is carried out by using the second generation non-dominant sorting genetic algorithm (NSGA- 鈪,
本文编号:2378221
[Abstract]:The topology optimization of electric bus underframe is carried out by using the second generation non-dominant sorting genetic algorithm (NSGA- 鈪,
本文编号:2378221
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2378221.html