当前位置:主页 > 科技论文 > 自动化论文 >

基于组群优化的聚类算法研究

发布时间:2018-12-25 19:55
【摘要】:聚类算法是非监督学习算法领域中的一个经典算法,在对数据集的分布情况没有先验知识了解的前提下,利用相似性度量将数据集进行分类。通过聚类,发现数据样本间的关联关系。然而,在算法性能方面,传统聚类算法的表现相对较差。因此,利用群智能优化的不同参数和启发式函数规则来提高聚类效果和鲁棒性越来越受到研究者的关注。近年新兴的组群搜索优化算法,具有参数少,操作简单,不易陷入局部最优等优势,同时也面临收敛速度较慢等问题。本文提出改进组群搜索优化算法,将其思想应用于求解聚类算法,提出四种基于组群搜索优化思想的聚类算法,将传统聚类问题作为优化问题来解决。主要创新点如下:第一,提出基于发现者适应度范围排序策略的DRGSO算法。引入排序策略,避免陷入局部最优,克服了传统组群搜索优化算法(Group Search Optimizer Algorithm,GSO)中组群算子搜索方向单一,资源信息利用不足的问题,丰富寻优启发式搜索的资源信息,提高发现者种群的全局搜索能力。在11组国际标准测试函数上的仿真实验结果表明:DRGSO算法性能明显提高,收敛速度较快。第二,提出基于差分演化策略的组群搜索优化算法(Differential Ranking-based Group Search Optimizer,DRGSO)。引入四种差分变异算子模式来设计组群算子,加快算法收敛速度,克服了 GSO算法存在的收敛速度较慢,精度不高等问题。与GSO相比,改进的组群搜索操作使发现者搜索结构更为优化,能确保算法搜索路径多样性,提高算法收敛精度。第三,提出四种基于组群优化的聚类分析方法,具体包括:GSO聚类算法、基于均值GSO聚类算法、DRGSO聚类算法和基于均值DRGSO聚类算法。首先,利用GSO优化算法的种群结构来编码簇中心位置,优化聚类算法的簇分配过程,在GSO迭代过程中完成簇移动,简化聚类分析方法的复杂度,提高聚类效果。其次,提出根据发现者种群适应度范围进行局部均值策略,避免陷入局部最优,完善个体间信息资源的共享模式。最后,利用差分变异算子模式,让簇移动更具多样性,提高聚类算法的全局搜索能力。在国际标准数据集Iris、Wine上的实验结果表明,组群搜索优化聚类算法的聚类效果更明显、具有较好稳定性和鲁棒性。
[Abstract]:Clustering algorithm is a classical algorithm in the field of unsupervised learning algorithm. In the absence of prior knowledge of the distribution of data sets, the data sets are classified by similarity measurement. By clustering, the correlation between data samples is found. However, the performance of traditional clustering algorithm is relatively poor. Therefore, using different parameters and heuristic function rules of swarm intelligence optimization to improve clustering effect and robustness has attracted more and more attention. In recent years, the new cluster search optimization algorithm has the advantages of few parameters, simple operation, not easy to fall into local optimum, and also faces some problems such as slow convergence speed and so on. In this paper, an improved cluster search optimization algorithm is proposed, and its idea is applied to the clustering algorithm. Four clustering algorithms based on cluster search optimization are proposed. The traditional clustering problem is solved as an optimization problem. The main innovations are as follows: first, the DRGSO algorithm based on the range ordering strategy of discoverer fitness is proposed. The sorting strategy is introduced to avoid falling into local optimum, which overcomes the problem of single search direction of group operator and insufficient utilization of resource information in traditional group search optimization algorithm (Group Search Optimizer Algorithm,GSO), and enriches the resource information of heuristic search. Improve the global search ability of the discoverer population. The simulation results on 11 international standard test functions show that the performance of DRGSO algorithm is obviously improved and the convergence rate is faster. Secondly, a group search optimization algorithm (Differential Ranking-based Group Search Optimizer,DRGSO) based on differential evolution strategy is proposed. Four kinds of differential mutation operator patterns are introduced to design group operators to accelerate the convergence speed of the algorithm and overcome the problems of slow convergence rate and low precision of GSO algorithm. Compared with GSO, the improved group search operation can optimize the search structure of the discoverer, ensure the diversity of the search path and improve the convergence accuracy of the algorithm. Thirdly, four clustering methods based on cluster optimization are proposed, including: GSO clustering algorithm, GSO clustering algorithm based on mean value, DRGSO clustering algorithm and DRGSO clustering algorithm based on mean value. Firstly, the cluster center position is encoded by the population structure of GSO optimization algorithm, and the cluster assignment process is optimized. The cluster movement is completed in the GSO iteration process, which simplifies the complexity of the clustering analysis method and improves the clustering effect. Secondly, according to the range of population fitness of discoverers, a local mean strategy is proposed to avoid falling into local optimum and perfect the sharing mode of information resources among individuals. Finally, the differential mutation operator pattern is used to make the cluster move more diverse and improve the global searching ability of the clustering algorithm. The experimental results on the international standard data set Iris,Wine show that the clustering effect of cluster search optimization clustering algorithm is more obvious, and the clustering algorithm has better stability and robustness.
【学位授予单位】:天津科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP18;TP311.13

【参考文献】

相关期刊论文 前10条

1 金建国;;聚类方法综述[J];计算机科学;2014年S2期

2 汪慎文;丁立新;张文生;郭肇禄;谢承旺;;差分进化算法研究进展[J];武汉大学学报(理学版);2014年04期

3 肖立中;刘云翔;陈丽琼;;基于改进粒子群的加速K均值算法在入侵检测中的研究[J];系统仿真学报;2014年08期

4 刘华臣;王锡淮;肖健梅;王海锋;;基于群搜索算法的电力系统无功优化[J];电力系统保护与控制;2014年14期

5 赵新超;刘子阳;;差分和扰动混合的多策略粒子群优化算法[J];计算机科学与探索;2014年02期

6 于海涛;贾美娟;王慧强;邵国强;;基于人工鱼群的优化K-means聚类算法[J];计算机科学;2012年12期

7 汪慎文;丁立新;谢承旺;谢大同;舒万能;杨华;;群搜索优化算法中角色分配策略的研究[J];小型微型计算机系统;2012年09期

8 汪慎文;丁立新;谢大同;舒万能;谢承旺;杨华;;应用反向学习策略的群搜索优化算法[J];计算机科学;2012年09期

9 王千;王成;冯振元;叶金凤;;K-means聚类算法研究综述[J];电子设计工程;2012年07期

10 陈小全;张继红;;基于改进粒子群算法的聚类算法[J];计算机研究与发展;2012年S1期

相关博士学位论文 前3条

1 刘逸;粒子群优化算法的改进及应用研究[D];西安电子科技大学;2013年

2 曲建华;基于群体智能的聚类分析[D];山东师范大学;2010年

3 陈毅恒;文本检索结果聚类及类别标签抽取技术研究[D];哈尔滨工业大学;2010年

相关硕士学位论文 前7条

1 刘婵;蚁群与K均值聚类算法融合研究及其在用户分群中的应用[D];西南科技大学;2015年

2 郑玉艳;基于粒子群优化的聚类算法研究[D];山东师范大学;2015年

3 周虹;基于自适应粒子群的k-中心聚类算法研究[D];长沙理工大学;2012年

4 房娟艳;混合群搜索优化算法及其应用研究[D];太原科技大学;2010年

5 刘寿吉;基于群体智能的蚁群聚类算法及应用[D];复旦大学;2008年

6 马学阳;基于粒子群聚类方法的上市公司财务能力评价模型[D];吉林大学;2007年

7 陈君彦;基于粒子群的聚类算法改进及其在访问模式中的应用研究[D];天津大学;2007年



本文编号:2391566

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2391566.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户158a8***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com