光伏发电系统改进型最大功率跟踪算法的研究与应用
[Abstract]:Energy is not only the foundation of social development, but also the driving force of economic construction. The unique zero pollution and inexhaustible characteristics of solar energy make it the most ideal clean energy in the world, and solar energy is used to generate electricity is one of the most important uses. The research on photovoltaic power generation system not only provides an effective solution for the sustainable use of energy and environmental protection, but also has an important strategic significance for the stable development of society. The use of maximum power tracking control technology is an effective way to improve the efficiency of photovoltaic power generation system, which has an important impact on photovoltaic power generation industry, and is also a research hotspot in this field. In this paper, photovoltaic power generation system as the research object, aiming at the maximum power tracking problem, the main contents are: 1. According to the equivalent circuit of photovoltaic cell, the mathematical model of photovoltaic cell is deduced, and the model of photovoltaic cell and the simulation platform of the whole photovoltaic system are built by using Matlab/Simulink. The V-I output characteristics of photovoltaic cells are simulated by using the built simulation platform, and the traditional duty cycle disturbance observation method is analyzed and simulated. 2. In this paper, the measurement error of the training data in maximum power point tracking using BP neural network is analyzed. It is pointed out that the accuracy of BP neural network (LS-NN) MPPT algorithm based on least squares depends heavily on the accuracy of training data, and a BP neural network (QLS-NN) MPPT algorithm based on quasi least squares neural network is proposed. The prediction results of two different algorithms are compared by simulation analysis and experimental test. 3. 3. The method of maximum power tracking based on impedance matching principle is also studied in this paper. Based on the theoretical analysis of the traditional impedance matching MPPT algorithm, it is found that the traditional impedance matching MPPT algorithm is sensitive to the system parameters, and an improved dynamic impedance matching MPPT algorithm is proposed. The improved dynamic impedance matching MPPT algorithm proposed in this paper can effectively improve the performance of photovoltaic power generation system through the comparison of simulation and experiment. In this study, the BP neural network MPPT algorithm based on quasi least squares is used to reduce the influence of training samples with measurement error on the prediction of maximum power using neural network, and the robustness of the system is improved. The MPPT algorithm based on improved dynamic impedance matching can effectively solve the problem that the system parameters are set more and the output power is greatly affected by the load for the traditional impedance matching MPPT algorithm. It provides a reference for improving the overall efficiency and stability of photovoltaic power generation system.
【学位授予单位】:温州大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM615;TP183
【参考文献】
相关期刊论文 前10条
1 ;2030年前全球太阳能光伏发电能力将强劲增长[J];石油化工应用;2016年09期
2 马庆强;;我国光伏产业发展的现状、问题及国际经验借鉴[J];上海经济;2016年04期
3 聂晓华;赖家俊;;复杂应用环境下粒子群光伏MPPT控制方法[J];电力电子技术;2016年01期
4 丁天启;谷彩连;;基于定步长扰动观察法的光伏电池最大功率点跟踪仿真[J];沈阳工程学院学报(自然科学版);2016年01期
5 高金辉;李国成;;一种开路电压和短路电流相结合的MPPT算法研究[J];电力系统保护与控制;2015年24期
6 韩丽;尚仪;史丽萍;;基于在线自调整神经网络的最大功率跟踪方法研究[J];太阳能学报;2015年08期
7 董秀成;皮光林;;能源地缘政治与中国能源战略[J];经济问题;2015年02期
8 张梦洁;;英国将成为欧洲太阳能光伏市场新领头羊[J];能源研究与利用;2014年04期
9 袁晓玲;施俊华;徐杰彦;;计及天气类型指数的光伏发电短期出力预测[J];中国电机工程学报;2013年34期
10 何耀耀;许启发;杨善林;余本功;;基于RBF神经网络分位数回归的电力负荷概率密度预测方法[J];中国电机工程学报;2013年01期
相关会议论文 前1条
1 傅望;郭珂;周林;;光伏电池工程用数学模型研究[A];重庆市电机工程学会2010年学术会议论文集[C];2010年
相关博士学位论文 前2条
1 张正江;过程系统的数据校正与参数估计[D];浙江大学;2010年
2 张超;光伏并网发电系统MPPT及孤岛检测新技术的研究[D];浙江大学;2006年
相关硕士学位论文 前6条
1 吕盛华;基于光伏阵列拓扑的全局最大功率跟踪算法研究[D];太原理工大学;2016年
2 李帅;基于BP神经网络的光伏列阵MPPT控制研究[D];东北电力大学;2016年
3 陈建龙;电动汽车的双向DC-DC变换器的研究[D];哈尔滨工业大学;2015年
4 刘国胜;基于偏差调节的最大功率点跟踪技术比较研究[D];燕山大学;2014年
5 王厦楠;独立光伏发电系统及其MPPT的研究[D];南京航空航天大学;2008年
6 郭熠;电动汽车双向DC/DC变换器的研究[D];天津大学;2004年
,本文编号:2414896
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2414896.html