基于WebGIS棉花虫害监测系统平台研发
[Abstract]:Cotton is the main crop in Xinjiang and Bingtuan. It is necessary to provide cotton pest monitoring information service in time and effectively. The traditional manual management fee is time-consuming and difficult to count, and the remote sensing monitoring is affected by the transit time and needs the ground verification support. Mobile GIS technology can provide an effective solution for pest management, such as fast data acquisition, real-time transmission, unified storage, spatial analysis and service release. On the basis of using intelligent mobile terminal to realize the fast acquisition of pest space and attribute information in cotton field, this paper mainly discusses the unified encapsulation and storage of pest information, the method of GIS spatial analysis and service release, the design and construction method of system platform. In order to solve the dynamic configuration, assembly, aggregation, optimization and push key theoretical and technical problems of cotton field pest information active service. By setting up a unified information service platform, we can push the early warning and prevention information to farmers and grass-roots agricultural technicians in time. The main research results obtained are as follows: (1) collecting and collating the historical pest data, meteorological data, pest potential data and remote sensing images, basic geography, land use of the study area for the past 12 years. Basic farmland and 22 units of farmers and plant protection personnel and other data. Following the classification standard of cotton pest classification and using mobile GIS,GPS, off-line map loading and drawing techniques, the fast collection of pest location and attribute information is realized based on mobile terminal. It is stored in spatiotemporal database through JSON mode. Set up the standard of collecting and entering the data of group-level insects, and realize the unified storage and management of spatial data and attribute data. (2) in view of the spatial data of insects, the inverse distance interpolation method is used to obtain the raster map of pest occurrence grade. Then the raster data is clipped, reclassified, vectorized and spatial linked, and the pest occurrence grade of each field block is obtained. On this basis, the hot spot region of cotton pest occurrence is obtained through hot spot analysis. The cross analysis method is used to obtain the area where cotton pests occur seriously, the spatial analysis algorithm and service model are studied, and the corresponding insect information services are designed and published. (3) under the My Eclipse 10 development environment, based on ArcGIS Server services, the spatial analysis algorithm and service model are studied. ArcGIS JavaScript API and other key technologies, using Web AppBuilder framework to build cotton pest information monitoring service platform, integrate GIS spatial analysis, spatial query, statistical analysis, design the production and expression of pest information service products, establish pest collection. Process, analyze and release the whole process. The system platform acquires and shares cotton pest information in time so that agricultural technicians can take preventive measures and use mobile terminal to realize the real-time collection of insect pest information, which can be completed in 5 seconds from acquisition to storage. Based on the spatial analysis of GIS, the cotton pest monitoring and forecasting model is established. On the one hand, the thematic map is published as a service, which is convenient for users to browse through browser or App on the PC side. On the other hand, the pest information thematic map is cross-analyzed with the cotton plot map which contains the information of farmers, and the areas with serious damage are screened out and pushed accurately to the users through the JPush platform.
【学位授予单位】:石河子大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP274;S435.62
【参考文献】
相关期刊论文 前10条
1 周文杰;赵庆展;靳光才;尹小君;戴建国;;基于温湿系数的棉蚜发生等级预报模型[J];植物保护学报;2016年06期
2 时雷;张家耀;钱诚;郭伟;马新明;赵晓莉;;基于Web的农作物信息管理系统构建与应用[J];河南农业科学;2015年03期
3 赵庆展;靳光才;周文杰;汪传建;戴建国;;基于移动GIS的棉田病虫害信息采集系统[J];农业工程学报;2015年04期
4 房雪;GE Saiying;张永生;曹婧;欧阳芳;;1991—2010年中国棉花病虫害经济损失分析[J];应用昆虫学报;2014年04期
5 张春霞;;新疆棉花虫害综合防治发展进程及技术[J];中国农业信息;2014年05期
6 谈树成;金艳珠;冯龙;虎雄岗;杨炀;李益敏;;基于RIA的WebGIS斜坡地质灾害气象预报预警信息系统的设计与实现——以怒江为例[J];地球学报;2014年01期
7 J.D.WERTS;E.A.MIKHAILOVA;C.J.POST;J.L.SHARP;;Sediment Pollution Assessment of Abandoned Residential Developments Using Remote Sensing and GIS[J];Pedosphere;2013年01期
8 王艳春;王承明;田明英;迟胜起;;烟台市苹果病虫害监测预警系统的研发与应用[J];河南农业科学;2012年12期
9 张竞成;袁琳;王纪华;罗菊花;杜世州;黄文江;;作物病虫害遥感监测研究进展[J];农业工程学报;2012年20期
10 赵冰梅;李贤超;王俊刚;;2011年新疆兵团棉花病虫害发生特点及原因分析[J];中国棉花;2012年03期
相关博士学位论文 前2条
1 邹金秋;农情监测数据获取及管理技术研究[D];中国农业科学院;2012年
2 吕昭智;棉铃虫网络监测预警信息系统关键技术的研究[D];中国农业大学;2004年
相关硕士学位论文 前10条
1 宋浩;基于RIA/JavaScript技术的高速公路滑坡监测预报管理信息系统的设计与实现[D];长安大学;2015年
2 张健;基于WebGIS的农业地理数据可视化技术研究及应用[D];浙江大学;2015年
3 刘爱霞;基于WebGIS的基本农田信息服务平台的设计与实现[D];长安大学;2015年
4 周楷淳;基于RIA的变形监测WebGIS系统研究与应用[D];中南大学;2013年
5 李伟为;基于WEBGIS的玉米精准施肥系统的设计与实现[D];吉林农业大学;2011年
6 刘方军;基于MVC三层架构模式的研究与应用[D];广东工业大学;2011年
7 罗艺;基于WebGIS的作物生产管理信息系统建设[D];山东农业大学;2010年
8 何江勇;基于WebGIS的新疆石河子地区棉花平衡施肥专家决策系统的开发[D];西北农林科技大学;2008年
9 张旭;基于Web GIS的棉铃虫预警与决策支持系统[D];石河子大学;2008年
10 陈鹏程;地面高光谱遥感在棉叶螨监测中的应用研究[D];石河子大学;2006年
,本文编号:2422233
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2422233.html