RNA遗传算法及在桥式吊车中的应用研究
[Abstract]:Genetic algorithm is a kind of intelligent optimization algorithm, which is simple and easy to use, strong robustness, parallel ability and large expansion space. It simulates the natural law of biological evolution, "survival of the fittest," and because genetic algorithms have no continuity or differentiability in their treatment of optimization problems, RNA genetic algorithm (RNA-GA) is a new type of genetic algorithm inspired by RNA molecular operations. The improvement of RNA genetic algorithm and its application in bridge crane are discussed in this paper. The main contents of this paper are as follows: (1) the development and research status of genetic algorithms are summarized briefly. And the research status of modeling and control of bridge crane. (2) A new RNA genetic algorithm (fsRNA-GA), which is inspired by fish herd behavior, is proposed. A neighborhood search operation designed in fsRNA-GA is used to measure the degree of crowding among individuals by defining the crowding factor of fitness function in order to find more potential individuals in local space. In view of the large number of parameters to be optimized, matrix coding is used instead of chain coding in RNA-GA. Experiments on some typical test functions show that the algorithm has good performance for low and high dimensional unconstrained optimization problems. The proposed fsRNA-GA is used to optimize the radial basis function (RBF) neural network basis function center. The neural network is trained by the data collected from the bridge crane experiment platform, and the RBF neural network model of the bridge crane position and swing angle is established. The simulation results show the effectiveness of the proposed neural network model. (3) A high-order codon selection operation RNA genetic algorithm (csRNA-GA) is proposed. This algorithm increases the probability of elite genes entering the next generation in the process of evolution, and enriches the diversity of the population. Through the optimization experiments of some typical test functions, the results show that the proposed algorithm has better global search ability and average convergence accuracy. Aiming at the parameter setting problem of PID controller in bridge crane system, the csRNA-GA algorithm is used to optimize the parameters of double PID controller of bridge crane system. The simulation results show that the optimized parameters of the PID controller can realize the control effect of the two-dimensional bridge crane with fast speed, no overshoot and small swing amplitude.
【学位授予单位】:浙江大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP18
【参考文献】
相关期刊论文 前10条
1 徐传敬;赵敏;李天明;;一种改进遗传算法的PID参数整定研究[J];计算机技术与发展;2016年09期
2 张梦杰;徐为民;郑翔;刘玉强;;关于桥式吊车动态系统稳定性控制研究[J];计算机仿真;2016年07期
3 孙宁;方勇纯;陈鹤;;欠驱动惯性轮摆系统全局滑模控制[J];控制理论与应用;2016年05期
4 王辉;朱龙彪;朱天成;陈红艳;邵小江;朱志慧;;基于粒子群遗传算法的泊车系统路径规划研究[J];工程设计学报;2016年02期
5 陈鹤;方勇纯;孙宁;钱_g哲;;基于伪谱法的双摆吊车时间最优消摆轨迹规划策略[J];自动化学报;2016年01期
6 周超;;基于ARM的桥式吊车信息融合控制器的设计[J];自动化与仪器仪表;2015年11期
7 吴勇;王雪;赵焕义;;基于图染色理论和遗传蜂群算法的并行测试任务调度[J];计算机应用;2015年05期
8 孙宁;方勇纯;钱_g哲;;带有状态约束的双摆效应吊车轨迹规划[J];控制理论与应用;2014年07期
9 杜文正;谢政;童国林;;基于粒子群优化算法的桥式起重机PID控制参数优化[J];计算机测量与控制;2013年02期
10 孙宁;方勇纯;苑英海;张玉东;;一种基于分段能量分析的桥式吊车镇定控制器设计方法[J];系统科学与数学;2011年06期
相关博士学位论文 前3条
1 孙宁;欠驱动吊车轨迹规划与非线性控制策略设计、分析及应用[D];南开大学;2014年
2 陶吉利;基于DNA计算的遗传算法及应用研究[D];浙江大学;2007年
3 李晓磊;一种新型的智能优化方法-人工鱼群算法[D];浙江大学;2003年
,本文编号:2453275
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2453275.html